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Abstract

The paper summarizes main principles of an advanced skeletal muscle model. The proposed mathematical model
is suitable for a 3D muscle representation. It respects the microstructure of the muscle which is represented by
three basic components: active fibers, passive fibers and a matrix. For purposes of presented work the existing
material models suitable for the matrix and passive fibers are used and a new active fiber model is proposed. The
active fiber model is based on the sliding cross-bridge theory of contraction. This theory is often used in modeling
of skeletal and cardiac muscle contractions. In this work, a certain simplification of the cross-bridge distribution
function is proposed, so that the 3D computer implementation becomes feasible. The new active fiber model is
implemented into our research finite element code. A simple 3D muscle bundle-like model is created and the
implemented composite model (involving the matrix, passive and active fibers) is used to perform the isometric,
concentric and excentric muscle contraction simulations.
c© 2009 University of West Bohemia. All rights reserved.
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1. Introduction

Computer simulations of various human body functions have already shown a wide applicability
in many branches of medicine, sports or vehicle safety research. The human body modeling
respects two concepts in general. The first one is based on a tissue microstructure and enables a
detailed modeling of body parts, while the second one models a human body as a whole usually
in the interaction with surroundings. These two concepts complement each other.

This paper deals with modeling of skeletal muscle tissue and focuses on the detailed descrip-
tion of active properties. It provides a compact summary of the investigated problem including
the relations presented in [11] completed by several essential conditions. The model is imple-
mented into the MAFEST (Matlab Finite Element Simulator) software that is being developed
at our laboratory, see [2]. MAFEST is a modular software suitable for various modeling tasks
in biomechanics. Recently it has been used for implementation of smooth and cardiac muscle
tissue modeling, together with the related sensitivity algorithm for material parameters identifi-
cation, cf. [3, 17, 18]. The identification algorithm was used for smooth muscle tissue [13] and
kidney [4] parameter determination.

The active fiber model is based on the cross-bridge kinetics (sometimes also called theory
of sliding filaments) introduced firstly by Huxley [9] which was further extended or used by
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many other authors, cf. [6, 15, 19]. The paper introduces an advanced active fiber model which
in connection with a proper model of passive fibers and matrix gives a suitable 3D composite
skeletal muscle representation.

2. Anatomical background

Following paragraphs give a brief summary of a skeletal muscle anatomy and a physiology of
muscle contraction ease to a reader the orientation in a number of terms.

2.1. Skeletal muscle structure

Skeletal muscles can be described from the macroscopic and the microscopic points of view.
We start with the macroscopic one. A long multinucleate fiber is a basic constructive element
of each skeletal muscle that is important for this approach. Muscle fibers are then joined to a
primary bundle and the parallel oriented bundles form a muscle.

At the microscopic level the fiber can be further divided into myofibrils, each containing
a number of filaments. The cytoplasm, often called sarcoplasm, of the muscle filamentum in-
volves many actual contractile elements called sarcomeres. The basis of each sarcomere is
created by the thin filaments containing the protein actin and the thick filaments containing
the protein myosin. They fit together and create so called cross-bridges which enable a mu-
tual movement causing the contraction of the sarcomere, see fig. 1, left. The thin filaments of
adjacent sarcomeres are anchored in so called Z-discs. The regular structure of Z-discs is re-
sponsible for a striated appearance of the skeletal muscle. The sarcomere structure is outlined
in fig. 1, right.

2.2. Contraction cycle

The contraction occurss when the cross-bridges between actin and myosin bind and generate
a force causing the thin filaments to slide along the thick filaments. According to the sliding
filament theory the sarcomere force depends on the amount of overlaps of the actin and myosin
filaments.

Fig. 1. Bonding of a cross-bridge (left), sarcomere structure(right); taken from [10]

The optimum sarcomere (fiber, muscle) length is the length when the overlap of the actin
and myosin filaments enables the interaction of all cross-bridges and consequently the generated
force touches its peak. With increasing muscle length the number of cross-bridges decreases.
For lengths smaller than the optimum length, actin filaments overlap and the number of coop-
erating cross-bridges again decreases.
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The passive force contributes also to the total force for lengths over a passive slack length,
i.e. the smallest length when any force is exerted under passive conditions. The contraction is
a very complicated cycle, which stands upon the creation and conversion of ATP and on the
transfer of calcium ions, cf. [1, 10].

3. Composite model of skeletal muscle

The proposed model consists of a matrix, active fibers and passive fibers. A new active fiber
model, whose incomplete version was introduced in [11], is implemented. The hyperelastic ma-
terial model for the matrix and viscoelastic passive fibers with linear elastic response are chosen
from the MAFEST library. The proposed active fiber model arises from a sliding cross-bridge
theory of contraction, cf. [10], which is often used in skeletal and cardiac muscle modeling.

3.1. General setting

Below we use the following notation: vectors: � with components {�i}, i = 1, 2, 3; second
order tensors: � with components {�ij}, i, j = 1, 2, 3.

The composite model assumes that at any point in the material the properties of the solid
reflect the microstructure. The microstructure of muscle is characterized by three basic com-
ponents: active fibers representing bundles of muscle cells, passive fibers corresponding to
collagen and elastin fibers and finally a matrix substituting the amorphous extracellular sub-
stance. These components are supposed to occupy an infinitesimal volume according to the
volume fractions denoted by φa, φp and φm respectively, so that

φa + φp + φm = 1. (1)

All the components contribute then to the total stress in proportion to their volume fractions,
cf. [16]. Large deformations exhibited by the muscle tissue are described using the total La-
grangian formulation (TLF). The total second Piola–Kirchhoff stress tensor S is represented by
the summation of the contributions of each component which are proportional to the associated
volume fractions:

S = φmSm + φpτ p + φaτ a, (2)

where Sm is the matrix stress, τ p and τ a are the stress tensors of fibrous components. Similar
composite model types are described for example in [8]. At any point of the continuum the
model enables both active and passive fibers to be distributed in several preferential directions k
in which the tension can be transmitted, k belongs to the index set Ia in case of the active fibers
and to the index set Ip for the passive fibers. The kth direction is defined by the unit vector
vk = (vk

1 , v
k
2 , v

k
3) related to the undeformed configuration. A quantity of active fibers in the

kth direction is proportional to the volume fraction φk
a,
∑

k∈Ia φk
a = 1 and analogously for the

passive fibers. Using the directional tensor ωk
ij = vk

i v
k
j the stress tension of fibrous components

can be expressed as
τ p =

∑
k∈Ip

φk
pτ

k
p ωk, τa =

∑
k∈Ia

φk
aτ

k
a ωk (3)

(indexes ij omitted). Hence the fibrous components introduce strong anisotropy to the model.
We are interested mainly in quasi-static solutions and we omit in the following the inertia

terms. Assuming the solution up to the step n to be known, we seek the solution at the step
n + 1 satisfying the equilibrium equation∫

Ω(0)

S(n+1) : δE(v) dΩ − L(n+1)(v) = 0, ∀v ∈ V 3, (4)
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where E is the Green deformation tensor, L represents linear loads and V is a suitable function
space. The Green deformation tensor can be expressed using the deformation gradient F as
E = 1/2(F T F − I) = 1/2(C − I). Here F relates the spatial coordinates x to the material
ones X by F = ∂x

∂X
, C is the right Cauchy-Green deformation tensor, C = F T F and I is the

identity.

3.2. Matrix

A rather simple hyperelastic material model is chosen for the matrix, substituting the extracel-
lular substance, since only small contribution of the matrix to the mechanical behavior of the
complex tissue is considered, which was proved sufficient in similar models, cf. [5] and [14].
To respect the nearly incompressibility of soft tissues it is convenient to split the Sm into the
effective (shear) part Seff and the volumetric (pressure) part −pJC−1 with J = det(F ). The
incompressibility is treated using common definition p = −K(J − 1), where K is the bulk
modulus.

In our model the matrix is represented by the hyperelastic material, the second Piola Kirch-
hof stress tensor can be obtained as

Sm =
∂W

∂E
. (5)

W denotes the strain energy which can have various forms according to a type of material. The
simplest hyperelastic material, the neo-Hookean, was chosen:

Sm = Seff − pJC−1 = μJ− 2
3 (I − 1

3
tr(C)C−1) + K(J − 1)JC−1, (6)

where the shear modulus μ and the bulk modulus K are the material parameters.

3.3. Passive fibers

The passive fibers characterize the collagen and elastin network in the muscle tissue which
shows nonlinear viscoelastic behavior. The fibers transmit only tension. The viscoelastic pas-
sive fibers with linear elastic response are chosen from the MAFEST material library [2]. This
type of passive fibers is represented by the uniaxial three parametric Kelvin-Zener model. The
viscoelastic stress τ p (in the following the superscript p omitted for brevity) is a function of the
elastic response σ and the internal stress-like variable q and it is expressed as

τ = σ − q, (7)

q̇ +
1

Tε
q =

γ

Tε
σ (8)

where Tε is the relaxation time and γ is the relaxation parameter. At the thermodynamic equi-
librium (q̇ = 0) from 7 and 8 one can obtain an explicit formula for σ(t)

σ(t) =
1

1 − γ

(
τ(t) − γ

∫ t

t0

e−β(t−s) dτ(s)

ds
ds

)
(9)

where β = (1 − γ)Tε. The elastic response is given always by the instantaneous strain εp(t)
obtained from displacement field. A very simple linear elastic response can be defined as

σ(t) = Dεp(t)(t) (10)

where D denotes a positive constant.
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Fig. 2. Passive fiber Fig. 3. Schema of the active fiber model

The collagen fibers are tangled in helical bundles in the undeformed tissue. Consequently
they can transmit tension only after their straightening, while in compression they cannot trans-
mit any load. This behavior is taken into account by the relative slack length parameter ε̄0

depicted in Fig. 2 and expressed by the following relations:

εp(t) ≥ ε(t) − ε̄0

τ(t) ≥ 0 (11)

τ(t) · (εp(t) − ε(t) + ε̄0) = 0

where ε̄0 ≥ 0 allows taking into account the waviness of collagen fibers in released state and
ε̄0 < 0 corresponds to residual stresses.

3.4. Active fiber model

The active fiber model employs ideas from a sliding cross-bridge theory of contraction. This
theory also known as the kinetic theory, was firstly proposed by A. F. Huxley already in 1957
and later it was extended by many other authors. The principles are based on modeling of bond-
ing and debonding cross-bridges between actin and myosin filaments. Major activities were
focused on the development of constitutive equations for description of the calcium activation
and cross-bridge bonding/debonding process. Fundamental seems to be a work [19] where an
approximation of a cross-bridge distribution function describing the kinetic theory was intro-
duced.

The muscle tissue besides contains active filaments, as well the material embodying the
viscoelastic behavior. Hence our model is constituted of the contractile element (CE) in series
with viscoelastic element (VE), see fig. 3. The VE respects the Kelvin-Zener rheological model,
the CE model arises from the Huxley type two state model.

3.5. Contractile part of active fiber

The constitutive equation of the contractile myofibers is based on the micro-mechanical Hux-
ley model. The simplest model of Huxley type assumes that the cross-bridges have only two
possible states: bonded and debonded. The bonded cross-bridge generates a force that causes
shortening of the sarcomere. The distribution of attached cross-bridges with respect to their
length ξ is given by the function n(ξ, t):

∂n(ξ, t)

∂t
− w(t)

∂n(ξ, t)

∂ξ
= r(t)f(ξ) (α − n(ξ, t)) − g(ξ)n(ξ, t), (12)
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where w represents the macroscopic shortening velocity [20], α denotes the overlap function:

α

(
λCE

λopt

)
=

⎧⎪⎨
⎪⎩

1 − 6.25
(

λCE

λopt
− 1

)2

for λCE

λopt
≤ 1,

1 − 1.25
(

λCE

λopt
− 1

)
for λCE

λopt
> 1,

(13)

where λCE represents the ratio of instantaneous contractile element length lCE and rest contrac-
tile element length LCE , λopt is the optimal stretch. The function f(ξ) is the attachment rate
function and g(ξ) is the detachment rate function of actin to myosin. Both of them are defined
according to [19].

The activation factor r in (12) represents the fraction of sites on the actin filament that
is activated. This activation occurs if the corresponding troponin site of the attachment sites
is unlocked by two calcium ions. The activation factor r is determined from the chemical
equilibrium between calcium and troponin and it is expressed as:

r =
C2

C2 + μC + μ2
, (14)

with C the calcium concentration in the myofibrilar space normalized with respect to the ma-
ximum myofibrilar calcium concentration and μ the troponin-calcium reaction ratio constant.
The rate of change of the normalized calcium concentration in the myofibrilar space is defined
according to [7]:

∂C

∂t
= ϑ(cν − C), (15)

where ϑ stands for the fiber-type dependent rate parameter, c is the calcium release parame-
ter and ν (ν = f/fmax) is the stimulation frequency f normalized by the tetanic stimulation
frequency fmax.

In the Huxley theory a bound cross-bridge is supposed to behave like a spring. The contrac-
tile stress developed by all cross-bridges in a slice of half sarcomeres is:

σCE = KA

∫ ∞

−∞
ξn(ξ, t) dξ = KAQ1(t) (16)

with KA a material constant. The term Q1 is the first moment of the distribution function n(ξ, t).

3.6. Simplified distribution-moment approximation

The equation (16) shows that the contractile stress does not depend on the exact shape of n(ξ, t)
but it is proportional to the first order distribution moment of n(ξ, t). The kth distribution
moment (DM) of n(ξ, t) is generally defined as:

Qk(t) =

∫ ∞

−∞
ξkn(ξ, t) dξ k = 0, 1, 2, . . . (17)

This idea was first used by Zahalak and published in [19]. The DM method transforms the
partial differential equation (12) to a set of first-order ordinary differential equations:

∂Qk

∂t
= αrβk − rφk1 − φk2 − kwQk−1 k = 0, 1, 2, . . . (18)
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with the integrals

βk =

∫ ∞

−∞
ξkf(ξ) dξ, φk1 =

∫ ∞

−∞
ξkf(ξ)n(ξ, t) dξ, φk2 =

∫ ∞

−∞
ξkg(ξ)n(ξ, t) dξ. (19)

If the approximation of n(ξ, t) is chosen suitably then the system (18) becomes explicit for
the moments Qk.

In [19] the Gaussian approximation is chosen as a proper approximation of participating
cross-bridge distribution. Thus n(ξ, t) is characterized by its first three moments Q0, Q1, Q2:

n(ξ, t) =
Q0√

2πq(t)
e
− (ξ−p)2

2q2 , (20)

p =
Q1

Q0
and q =

√
Q2

Q0
−
(

Q1

Q0

)2

, (21)

As a result a system of three first-order ordinary differential equations is obtained instead of
partial differential equation.

Substituting the Gaussian approximantion of n(ξ, t) into integrals φk1 and φk2 we obtain
expressions involving the error function, see [19]. Their computer implementation is rather
complicated. Hence it is convenient to further approximate the Gaussian approximation of
n(ξ, t) with a polynomial function. In [11] we proposed to approximate n(ξ, t) by two cubic
spline functions:

n(ξ, t) = c0 + c1ξ + c2ξ
2 + c3ξ

3, (22)

where the coeficients ci (i = 0, . . . , 3) depend on the moments Q0, Q1, Q2.

Fig. 4. Gaussian distribution of n(ξ, t). Signed nodes ξc and ξu are used for determining an appropriate
spline function

Each segment of the spline respects the maximum value (ξc) of the Gaussian distribution of
n(ξ, t) and the point (ξu) where n(ξ, t) is close to zero. These values are displayed in fig. 4. The
maximal value of n(ξ, t) is attained for (ξc = p), where p is defined in (21). The coefficients ci

follow from conditions for values of function and their first derivatives in the end points of the
interval (ξu, ξc): ⎡

⎢⎢⎣
1 ξc ξ2

c ξ3
c

1 ξu ξ2
u ξ3

u

0 1 2ξc 3ξ2
c

0 1 2ξu 3ξ2
u

⎤
⎥⎥⎦
⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
n(ξc)

0
0
0

⎤
⎥⎥⎦ . (23)
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Fig. 5. Comparison of Gaussian approximation
(dashed lines) to spline approximation (solid
lines) of n(ξ, t)

Fig. 6. Gauss. distrib. of n(ξ, t) for small Qi

(solid line) with the limit ε (dashed line)

Solving (23) gives:

c0 =
Q0√
2π

ξ2
u(3ξc − ξu)

(ξc − ξu)3
√

Q2/Q0 − (Q1/Q0)2
, (24)

c1 = −Q03
√

2√
π

ξcξu

(ξc − ξu)3
√

Q2/Q0 − (Q1/Q0)2
, (25)

c2 =
Q03√

2π

ξc + ξu

(ξc − ξu)3
√

Q2/Q0 − (Q1/Q0)2
, (26)

c3 =
Q0

√
2√

2π

1

(ξc − ξu)3
√

Q2/Q0 − (Q1/Q0)2
, (27)

where the limit value ξu fulfills the assumption:

ξu : n(ξu, t) < ε � 1. (28)

Solving (28) we obtain the expression for ξu which is a function of distribution moments:

ξu1 > p − q
√

2

√
−ln

ε

a0
, ξu2 < p + q

√
2

√
−ln

ε

a0
, (29)

with a0 = Q0

q
√

2π
and ξu = ξu1 corresponding to the left spline branch and ξu = ξu2 to the right

spline branch. Fig. 5 demonstrates the comparison of the Gaussian approximation and the spline
approximation of n(ξ, t). Moreover (21) and (28) give rise to four conditions of solvability:

Q0√
2πq

> 0, q > 0, Q0Q2 ≤ Q2
1

Q0√
2πq

< ε. (30)

Note that the conditions (30) do not limit the possible solutions. They correspond to physical
principles: fiber stiffness and generated force are greater than zero. The first three conditions
hold also for the Gaussian approximation, which is fitted to the experiment, the last one arises
from the spline approximation. If the last condition does not hold, it means that all Qi are small
and the situation displayed in fig. 6 occurs. In such a case it is possible to decrease ε, so that
this condition does not resctrict the solution.
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Fig. 7. Comparison of stretch and release response of the original Huxley model (solid lines) and the DM
approximation (dashed lines) with the Gaussian approximation of n(ξ, t) (right, taken from [19]) and the
DM approximation with the spline approximation of n(ξ, t) (left), constant velocity w = ±10 s−1.

The behavior of the selected spline approximation was tested for correctness on a simple
example and it was compared to a test published in [19]. The results are concluded by the
graphs in fig. 7, with the first distribution moment displayed on the vertical axis normalized by
its initial condition. For this comparison the initial conditions and parameters were set the same
as in [19].

3.7. Equilibrium of active and passive elements

The passive properties of the muscle tissue, which are associated to the connective tissue com-
ponents, are simulated by a viscoelastic component in series with the contractile element [17],
recall fig. 3. The total stretch of the active fiber is the summation of its two components:

λ =
l

L
= cCEλCE + cV EλV E = cCE

lCE

LCE
+ cV E

lV E

LV E
, (31)

where lCE , lV E denote the instantaneous and LCE , LV E the rest lengths of particular compo-
nents with the coefficients cCE, cV E. According to [17] it is assumed that w is proportional to
λCE. It is necessary to note that w is defined as contraction while λCE represents elongation,
therefore

w = −cwλ̇CE, (32)

with cw a proportional coefficient.
The stress response of the VE obeys:

τ(t, λV E) = (1 − γ)σ(λV E(t)) + γ

∫ t

0

e−(t−θ)/T σ̇(λV E(θ)) dθ, (33)

σ(λV E) = E(λV E − 1) = E

(
λ − cCEλCE

cV E
− 1

)
, (34)

where σCE is the linear elastic response with E the Young modulus, γ is the relaxation param-
eter and T the relaxation time.

As CE and VE are connected in series, they transmit the same tension and the whole element
is in the equilibrium:

τ(λ, λCE, t) = σCE(λCE , t). (35)

If the total deformation λ is given then λCE can be computed from the equilibrium equation
(35) and λV E satisfies (31).
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4. Implementation of the complete model into MAFEST

The material model of the active skeletal muscle fiber described in the previous sections was
implemented into MAFEST. This software is based on the combination of two programming
languages: Matlab and C, cf. [2]. The program core containing material definitions and FE
assembling is written in C. The user interface and the program logic are implemented in Matlab.

Recall that our material is a composite mixture (CM) consisting of three plys: a hyperelas-
tic matrix, passive fibers and active fibers where, according to the theory of mixtures, the total
stress of the material is the sum of stresses of particular plys weighted by their volume fractions
as stated in (2). All plys share a common displacement field and no mutual movement is con-
sidered, see [2], where the constitutive relations for matrix and passive fibers are described in
detail. The active fiber stress is defined by (16).

We assume our problem is discretized in space by finite elements (FE) [2]. In the TLF,
all quantities and integrals are related to the initial configuration which is undeformed and the
space derivatives are with respect to the material coordinates X . The displacements u represent
the unknown field, x = X + u, x = χT · x, u = χT · u and χ are the FE base functions.
In particular the tri-linear base functions are used in the numerical examples below with the
hexahedral finite elements.

The integral in the weak form of the equilibrium equation (4) is evaluated numerically over
each finite element using a numerical (Gauss) quadrature. Thus all the material parameters
must be given in all the quadrature points in the whole domain. In MAFEST, any parameter, in
particular the fibre directions, can be defined independently in each quadrature point, allowing
for the inhomogeneity and anisotropy of the tissue. The internal equilibrium of the active fiber
is solved in each quadrature point separately too.

The equilibrium equation of the CM is expressed below by the function f (discrete counter-
part of (4)) and h corresponds to the internal equilibrium of the active fiber (discrete counterpart
of (35)):

f (u̇, u, λCE) = 0, u = {uj}nu
1 , (36)

h(u, λCE) = 0, λCE = {λCEj}nQ

1 , (37)

where nu is the number of displacement degrees of freedom per element, nQ is the number of
quadrature points per element and λCE is the internal variable in quadrature points.

The discretized second Piola-Kirchhoff stress tensor S in vector form is denoted by s. Then
in the FE discretization the term δuE(u; v) turns into

δuE(u; v) ≈ B(u) · v, (38)

and the equations (36), (37) can be written in the form

f (u, λCE) :=

nQ∑
q=1

[B(u)T · s(u, λCE)J0] = 0, (39)

h|q := σCE(λCE) − τ(λ, λCE) = 0, q = 1 . . . nQ, (40)

where the total stress s for q = 1 . . . nQ (index omitted) is

s(u, λCE) := φmsm(u) + φaτa(u, λCE)ω + φpτp(u)ω. (41)
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Fig. 8. Muscle bundle in the undeformed state (left), fiber orientation (right)

Assuming the time discretization, for the step n + 1 we obtain:

f (u(n+1), λ
(n+1)
CE ) :=

nQ∑
q=1

[B(u(n+1))T · s(u(n+1), λ
(n+1)
CE )J0]|ξq = 0, (42)

h|q := σCE(λ
(n+1)
CE ) − τ(λ(n+1), λ

(n+1)
CE ) = 0, q = 1 . . . nQ, (43)

where the discretized equation for defining h|q is itemized in detail in [12]. The nonlinear
problem (36)–(37) is solved by the Newton method. The above equations, related to a single
finite element, are assembled for the whole discrete domain in the usual finite element sense.

5. Examples

The validation of the active fiber material model according to tests presented in literature can be
found in [11] or [12]. In our case the whole implemented skeletal muscle model is tested on a
simple muscle-like geometry. The shape reminding a muscle bundle is depicted undeformed in
fig. 8, left. Both the active and passive fibers are defined in the longitudinal direction as is shown
in fig. 8, right. The small model dimensions are chosen due to fact that all parameters found
in literature [6, 7, 19] are measured on small specimens (frog or rats). The used parameters of
active fibers are summarized in Tab. 1, where f1, g1, g2 and g3 belong to the attachment and
detachment rates f(ξ), g(ξ).

Table 1. Active fiber parameters

Contractile element Viscoelatic element
f1 [s−1] g1 [s−1] g2 [s−1] g3 [s−1] θ [s−1] μ [–] KA [kPa] γ [–] E [kPa] T [s−1]

35 7 200 30 11.25 0.2 400 0.75 104 0.1

The isometric contraction of the muscle model lasting 0.5 s is displayed in fig. 9 (a). The
reaction to the external loading which is lower (4 kPa) than the maximal force generated by the
muscle, is denoted as the concentric contraction and can be seen in fig. 9 (b). While the excentric
contraction occurs when the external loading is greater than the maximal force generated by the
muscle (20 kPa) and is presented in fig. 9 (c).

In all previous simulations the muscle model swells in its middle part. It is caused by the
uniform distribution of the active fiber parameter KA. This parameter is related to the fiber
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Fig. 9. Isometric (a), concentric(b) and excentric (c) contraction; constant KA

Fig. 10. Cross-section area along the bundle (left), distribution of KA for const = 60 000

Fig. 11. Isometric (a), concentric and excentric (c) contraction; KA = KA(x)

cross-section, which causes that the greater cross-sectional area contains more active fibers.
In consequence the active force generated in the middle of the bundle is greater due to this
greater cross-sectional area. However according to anatomy sources a muscle bundle contains
a constant number of fibers in an arbitrary cross-section, i.e. any muscle bundle generates a
constant force through its cross sections. Thus we define a KA as a function KA = KA(x),
such that the generated force remains constant and x changes along the muscle:

KA(x) =
const

S(x)
, (44)

where S(x) is the cross-sectional area dependent on the longitudinal coordinate x, see fig. 10.
The previous examples are now recomputed with KA dependent on the cross-sectional area.

As depicted in fig. 11 (a), the isometric contraction is now without the “belly effect”, the strains
are very small. For the comparison see also fig. 11 (b) and (c) where the concentric and excentric
contractions are displayed.
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6. Conclusion

The paper deals with the 3D skeletal muscle modeling. The muscle tissue is formed by a matrix,
passive fibers and active fibers. The implementation of the model uses the constitutive relations
provided by MAFEST for the passive fiber and the matrix, and for the active fibers the new
material model.

The active fiber behavior is based on the Huxley type model respecting the tissue microstruc-
ture and involving the calcium activation. The fiber microstructure is represented by a function
describing the actual distribution of bonded cross-bridges. The new approximation of the cross-
bridge distribution function leading to the easier computer implementation was proposed.

The simple muscle bundle-like geometry was created and the isometric concentric and ex-
centric contractions of our 3D muscle model were shown. The presented model is able to
simulate various situations during muscular contraction. It is also possible to apply the model
to an arbitrary geometry and respect the fiber architecture. It is suitable for modeling of isolated
muscles. However the implementation into a whole body model is not effective because of its
high computational complexity.
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