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Abstract

Muscle fibre contraction is a complex thermomechanical process. The change in muscle fibre length (isotonic
contraction) and tension (isometric contraction) may be regarded as muscle fibre growth (change in length) and
remodelling (change in stiffness).

In this study a general mathematical model based on the growth and remodelling theory and the theory of
irreversible thermodynamics is proposed. The isometric contraction of muscle fibre is treated as an isothermal
process. The relevance of chemical agents diffusion is also discussed.
c© 2010 University of West Bohemia. All rights reserved.
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1. Introduction

A lot of papers dealing with the theory of body growth and remodelling (GRT) have been
published. This study follows the approach discussed in [2]. The goal of this paper is to add
physical meaning to certain variables appearing in [2], especially in the case in which the theory
is applied to the modelling of muscle contraction.

The theory of irreversible thermodynamics is applied in this study, see [3, 5, 6], because
growth and remodelling imply processes that are dissipative and far from equilibrium. First,
three well-known thermodynamical theories, including the theory of thermodynamics of chem-
ical reactions, are summarised. Then the GRT is formulated according to the thermodynamics of
internal variables. Finally, this general formulation is specialized to a simple one-dimensional
(1D) model of muscle fibre contraction, see also [9].

2. Irreversible thermodynamics – an overview

As mentioned above, attention is paid to three different theories of irreversible thermodynam-
ics – classical irreversible thermodynamics (CIT), the theory with internal variables (IVT),
the extended irreversible thermodynamics (EIT).
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2.1. Classical irreversible thermodynamics (CIT)

The theory is based on the local equilibrium hypothesis [3]: “The local and instantaneous re-
lations between thermodynamic quantities in a system out of equilibrium are the same as for
a uniform system in equilibrium.” This means that each material point is assumed as a thermo-
dynamical system in equilibrium with state variables changing in the course of time. Exchange
of mass and energy between these material points is allowed.

The validation of this hypothesis is given by Deborah number De = τm/τM , where τm is
the equilibration time inside the system corresponding to the material point and according to
[3] is approximately 10−12s (namely, the time elapse between two collisions between particles
at normal pressure and temperature); τM is the macroscopic time. If De � 1 then the local
equilibrium hypothesis is appropriate.

Let the space of state variables a = [ai(x, t)] consist of extensive variables appearing
in Gibbs’ equation, i.e., thermodynamical variables such as specific internal energy u(x, t),
specific volume v(x, t), mass fraction ck(x, t) of the kth component, plus the velocity field
v(x, t). x is the position vector of the material point. The evolution equations have generally
the form of balance equations. The superposed dot denotes time derivation.

ρȧ = −∇ · Ja + σa, (1)

where Ja is the flux term of the extensive variables and σa is the source term.
To obtain entropy production the right-hand side (RHS) of equation (2) is substituted by (1)

ṡ = Γ iȧi, (2)

where Γi(x, t) is the conjugate intensive state variable to the extensive state variable ai(x, t), s
is the specific entropy, and after steps described in [5] the following relation is obtained

σs = JαXα, (3)

where Xα are the thermodynamical forces related to the gradient of intensive variables.
The simplest relation between fluxes and forces is the linear one

Jα = LαβXβ . (4)

The number of the phenomenological coefficients Lαβ , which depend on intensive variables,
can be reduced by enforcing the Curie’s law and Onsager-Casimir’s reciprocal relation, see [3].

2.2. Internal variables theory (IVT)

The theory is based on the accompanying state axiom [3]: “To each non-equilibrium state
corresponds an accompanying equilibrium state and to every irreversible process is associated
an accompanying ‘reversible’ process.”

A comprehensive introduction to IVT can be found in [3].
Let the set of the above mentioned state variables consist of specific internal energy u and

other local equilibrium variables a. Let it be enlarged by the set of so-called internal variables
ξ “measurable but not controllable” corresponding to inner microprocesses for which De > 1.

It is assumed that the volume element n far from equilibrium is suddenly surrounded by an
adiabatic rigid enclosure which forbids heat and momentum flux. Consequently, the values of
u, a and ξ remain unmodified, but the temperature T and the entropy s relax to the different
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Fig. 1. Correspondence between the accompanying reversible processes and the real irreversible pro-
cesses

values Te �= Tn, se �= sn, where the index e corresponds to the accompanying equilibrium state.
The correspondence between processes is explained in the fig. 1.

Gibbs’ equation for the accompanying entropy s[J kg−1K−1] is used in the less general form
as follows, in connection with the accompanying equilibrium state,

ṡ = T−1u̇ − T−1ρ−1Fe · ȧ + T−1A · ξ̇, (5)

where ρ[kg m−3] is the mass density, Fe is the force conjugate to the observable a and A is the
affinity (or configurational or Eshelby force) conjugate to ξ.

The balance law (1) for the specific internal energy u[J kg−1] can be written in the following
form

ρu̇ = −∇ · q + F · ȧ, (6)

where F is the force producing work in the real space and is generally different from Fe acting
on the fictitious accompanying process. q[Wm−2] is the heat flux (according to the first law of
thermodynamics). The second term on the RHS is the source term including the inner produc-
tion via, e.g., chemical processes and thermodynamic couplings. The additional power term -
the last one – in (5) represents an internal power which in case of real irreversible evolution is
dissipated inside the system. Consequently, this additional power does not appear in (6).

Substituting (6) into (5) one obtains

ρṡ = −∇ · (qT−1) + q · ∇T−1 + T−1(F − Fe) · ȧ + ρT−1A · ξ̇. (7)

Comparing (7) to the general form (1) the second law of thermodynamics can be written as
follows

σs = ρṡ + ∇ · (T−1q) = q · ∇T−1 + T−1(F − Fe) · ȧ + ρT−1A · ξ̇ ≥ 0, (8)

or more generally according to (3)

σs = JαXα + T−1ρA · ξ̇ ≥ 0. (9)

It should be pointed out that linear expressions for fluxes (4) are not mandatory. If Helm-
holz’s free energy f [J kg−1] (10) is introduced

f = u − Ts, (10)

103



J. Rosenberg et al. / Applied and Computational Mechanics 4 (2010) 101–112

one obtains
ḟ = −Ṫ s +

1

ρ
Fe · ȧ − A · ξ̇. (11)

Then, by substituting (11) into (8), the Clausius-Duhem inequality is obtained

−ρ(ḟ + sṪ ) + F · ȧ + T−1q · ∇T ≥ 0 ⇒ ρḟ ≤ −ρsṪ + F · ȧ + T−1q · ∇T. (12)

2.3. Extended irreversible thermodynamics

According to [4], CIT and IVT are limited to the states non far from equilibrium due to the
assumption of the either local or accompanying equilibrium state existence. CIT can not be
applied in situations in which the characteristic relaxation time of the involved irreversible dis-
sipation process (e.g. chemical, mechanical, thermal or electric) is of the same order of dynamic
characteristic time of interest, i.e., the Deborah number is close to 1. To bridge this gap, EIT
introduces the notion of local nonequilibrium state. Thermodynamic fluxes are introduced in
the set of state variables. These fluxes describe the interaction of a material point with its neigh-
borhood. The entropy depends not only on the heat flux but also on these fluxes, which are
regarded as controllable.

In the following, the attention is paid to IVT only for the reason of its generality and relative
simplicity. Although the majority of microprocesses in muscle tissue are much quicker than
mechanical deformation of tissue – Deborah number is much smaller than 1 – and CIT could
be applied, there are certain processes (e.g. within muscle fibre contraction) for which the
description in terms of IVT is useful (e.g. the description of the muscle fibre stiffness change
within isometric contraction).

3. Thermodynamics of chemical reactions

This chapter shows briefly the possible application of IVT to chemical reactions systems (see
e.g. [3] or [5] – a little bit more general approach according to [7] will be shown later). The other
thermo-mechanical processes and the internal variables are omitted and only a single chemical
reaction is taken into account.

The first law of thermodynamics has the form (compare with (6))

ρu̇ = −∇ · q. (13)

Gibbs’ equation is then (compare (5))

ṡ = T−1u̇ −
n∑

k=1

μ̄kT
−1ċk, (14)

where ck = mk/m is the concentration (mass fraction), mk the mass of kth component, m the
total mass and μ̄k[J kg−1] the chemical potential of the kth component measured per unit mass –
μk is then per unit mol (Mkμ̄k = μk where Mk is the molar mass). Because of [3]

ρċk = νkMkẎ , (15)

where νk is the stoichiometric coefficient of the kth component and Ẏ [mol m−3 s−1] the velocity
of reaction per unit volume. Relation (14) can be rewritten in the form

ρṡ = T−1ρu̇ −
n∑

k=1

T−1νkμkẎ . (16)
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Introducing the affinity of reaction A[J mol−1] as

A = −
n∑

k=1

νkμk, (17)

and using (13) the following equation is obtained for isothermal process

ρṡ = −∇ · (qT−1) + AT−1Ẏ . (18)

This, compared with the general relation (1), gives

J s = qT−1 (19)

for the entropy flux and
σs = AT−1w > 0, (20)

where w = Ẏ , for its production.
For coupled chemical reactions, relation (15) generalizes to

ρċk =
r∑

j=1

νkjMkẎj; k = 1, 2, . . . , n, (21)

where νkj is the stoichiometric coefficient of the component k in the reaction j. Entropy pro-
duction is then expressed (due to the generalization of (20)) as

σs =
r∑

j=1

AjT
−1wj > 0, (22)

where Aj is the affinity of the reaction j.
Chemical reactions are often accompanied by mass transport. In this case, (22) takes the

form (in an isothermal process, neglecting mechanical processes and internal variables)

σs =

r∑
j=1

AjT
−1wj −

n−1∑
α=1

T−1Jα · ∇(Δμ̄α) ≥ 0, (23)

where Δμ̄α = μ̄α − μ̄n, the index r represents the number of reactions, n the number of
components and Jα is the flux of the αth component.

If thermo-mechanical processes and internal variables are included, the main relations (5),
(6), (7), (8), (11), (12) can be finally written in the following form (see e.g. [7]), by combining
(23) with (5) and adding the term corresponding to mass flow,

T ṡ = u̇ − ρ−1Fe · ȧ + A · ξ̇ − ρ−1Δμ̄α(−∇ · Jα + MαναrẎr) =

= u̇ − ρ−1Fe · ȧ + A · ξ̇ + ρ−1ArẎr + ρ−1Δμ̄α∇ · Jα. (24)

The term in brackets represents the mass fraction rate of the αth constituent given by the clas-
sical diffusion equation

ρċα = −∇ · Jα + MαναrẎr. (25)

The Lavoisier principle Mαναr = 0 has been used.
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Moreover, taking (6) into account, one has that

ρu̇ = −∇ · q + F · ȧ + ρr, (26)

where r is consistent with the inner source of heat

ρṡ = − ∇ · (qT−1) + q · ∇T−1 + T−1(F − Fe) · ȧ + ρT−1A · ξ̇ +

+ T−1ArẎr + T−1Δμ̄∇ · J + T−1ρr (27)

and
ḟ = −Ṫ s + ρ−1Fe · ȧ − A · ξ̇ − ρ−1ArẎr − ρ−1Δμ̄α∇ · Jα. (28)

The second law of thermodynamics (8) takes the form

σs = ρṡ + ∇ · (T−1q) −∇ · (T−1Δμ̄J) − T−1ρr =

= q · ∇T−1 + T−1(F − Fe) · ȧ + ρT−1A · ξ̇ +

T−1Achem · w − J · ∇(T−1Δμ̄) ≥ 0, (29)

where Achem = [Ar]; w = Ẏ = [wr = Ẏr]; J = [Jα]; μ̄ = [μ̄α], or using (10) and (26)

−ρ(ḟ + sṪ ) + F · ȧ − T−1∇T · q + T−1∇T · (Δμ̄J) −∇ · (Δμ̄J) ≥ 0 ⇒
⇒ ρḟ ≤ −ρsṪ + F · ȧ − T−1∇T · q + T−1∇T · (Δμ̄J) −∇ · (Δμ̄J). (30)

4. Growth and remodelling theory and thermodynamics

The starting point is an initial configuration B0 that growths and remodels, i.e. changes its vol-
ume (growth), form and anisotropy (geometrical remodelling) or material parameters (material
remodelling). This process is represented in [2] by the tensor P (growth tensor in the follow-
ing), that relating the initial to the relaxed configuration Brx, is characterized by a null stress.
This configuration is related to the actual configuration Bt by the deformation tensor F, where
a nonnull stress as induced by growth, geometrical remodelling and external loading exists.

In the following, small deformations only are taken into account, without distinguishing
between Lagrangian and Eulerian approach. The deformation gradient between configurations
B0 and Bt can be written as

∇p = FP. (31)

The generalized principle of virtual power has been applied in [2] to formulate basic rela-
tions. Let the velocity of continuum ∇ṗ (p is the placement – the mapping between initial and
current configurations) and the velocity of growth ṖP−1 be considered. The set of test veloci-
ties is (v,V). Limiting to small deformations, the generalized virtual power can be expressed
as∫

B0

(−τ · ∇v + b · v + z · v + C ·V + B ·V) dV +

∫
∂B0

τ̂n · v dS = 0, ∀(v,V), (32)

where τ is the Piola stress tensor, b the volume force, z the vector of inner effects, B the inner
remodelling generalized force and C is the generalized external remodelling force, τ̂n is stress
specified on boundary and n is the vector of outer normal. Based on the principle of objectivity,
z = 0, see [2]. Applying Green’s theorem and rearranging, the following equations are obtained

Div τ + b = 0 on B0, B + C = 0 on B0, τ̂n = τn on ∂B0. (33)
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Further in this study the isothermal hypothesis is kept, but allow for chemical reactions
and the mass flux, adopting the IVT approach. In order to compare this approach with the
previous one, the state and internal variables are renamed a = [F,P], ξ ≈ K. The first law of
thermodynamics has the form (28). The term depending on ∇ · J is omitted.

ḟ = τe · ∇v + Ce · V − A · K̇ − ρ−1Achem · Ẏ . (34)

It is supposed that the free energy related to the relaxed configuration frx depends only on
F,K, Y . In the initial configuration is then

f(F,P,K, Y ) = Jfrx(F,K, Y ), (35)

where J = detP. For the material derivative of the LHS of (34) the following expression can
be derived, where V = ṖP−1,

ḟ = J

(
∂frx

∂F
· Ḟ +

∂frx

∂K
· K̇ +

∂frx

∂Y
· Ẏ + frxI ·V

)
. (36)

Inserting from (36) into (34), considering the velocity term ∇v = (Ḟ +FV)P, see e.g. [2],
and comparing the coefficients in the corresponding terms the first set of constitutive equations
is obtained

σe = J
∂frx

∂F
; A = −J

∂frx

∂K
; Achem = −Jρ

∂frx

∂Y
; JfrxI = σeF + Ce, (37)

where σe = τeP
T is the elastic Piola stress tensor.

The second law of thermodynamics takes the form (to be compared with (30) - the term
depending on ∇ · J is omitted)

ḟ ≤ τ · ∇v + C · V − ρ−1J · ∇(Δμ̄), (38)

where J represents the mass flux and Δμ̄ is the difference of the chemical potentials defined
above. Inserting from (36), considering ∇v = (Ḟ + FV)P the following relation is obtained

J

(
∂frx

∂F
· Ḟ +

∂frx

∂K
· K̇ +

∂frx

∂Y
· Ẏ + frxI · V

)
≤ σ·Ḟ+(σF+C)·V−ρ−1J ·∇(Δμ̄). (39)

Using (37), then

(σ − σe) · Ḟ + (C− JfrxI + σF) ·V + ρ−1Achem · Ẏ + A · K̇− ρ−1J · ∇(Δμ̄) ≥ 0. (40)

The term in brackets can be written in the form

(C − JfrxI + σF) = C −E where E = JfrxI − σF (41)

and (σ − σe) = σdis represents the dissipative component of the stress tensor.
The second set of constitutive equations – the evolution equations, see e.g. [5], – can be

obtained from (40) according to the linear phenomenological relations using the Onsager’s co-
efficients Lαβ (4) which should satisfy the corresponding inequalities,

σdis = LσF Ḟ + LσE(C − E) + LσAAchem + LσAA− Lσμ∇(Δμ̄),

V = LV F Ḟ + LV E(C − E) + LV AAchem + LV AA − LV μ∇(Δμ̄),

Ẏ = LY F Ḟ + LY E(C − E) + LY AAchem + LY AA − LY μ∇(Δμ̄), (42)
K̇ = LKF Ḟ + LKE(C − E) + LKAAchem + LKAA− LKμ∇(Δμ̄),

J = LJF Ḟ + LJE(C − E) + LJAAchem + LJAA − LJμ∇(Δμ̄).
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In matrix form ⎡
⎢⎢⎢⎢⎣

σdis

V

Ẏ

K̇
J

⎤
⎥⎥⎥⎥⎦ = L

⎡
⎢⎢⎢⎢⎣

Ḟ
(C −E)
Achem

A
−∇(Δμ̄)

⎤
⎥⎥⎥⎥⎦ . (43)

Clearly, not all coefficients are non-zero in the certain case. They need to satisfy the follow-
ing conditions

Lii ≥ 0; LiiLjj ≥
1

4
(Lij + Lji)

2; i, j = 1, 2, . . . , 5. (44)

They can have different tensor character and should satisfy Curie’s conditions and Onsager’s
reciprocal relations. For example, Fick’s law, which obtains when LJF = LJE = LJA =
LJA = 0.

In general, if the matrix L is diagonal, then the system is fully uncoupled. In that case the
first row represents the usual relation for the dissipative tensor, the second one corresponds to
the stress controlled growth according to [2], the third one allows to satisfy (20), the relation in
the fourth row was used e.g. in [9] and finally the fifth row is the mentioned Fick’s law.

5. Growth and remodelling theory applied to muscle fibre excitation

During muscle fibre stimulation, its inner structure and consequently either its force (in iso-
metric stimulation) or its length (in isotonic stimulation) changes. Muscle contraction can be
considered as a sort of growth or/and remodelling process. Let be assumed that the whole
process is isothermal and isometric and not fully coupled. While these assumptions are not
necessarily warranted, they are used to make the model as simplest as possible. However, the
discussed approach could allow for more complex models.

As a result of (37), frx has to contain the term AchemY . The source of energy for the
muscle fibre contraction is the hydrolysis of adenosin triphosphate (ATP ). In this process,
ATP transforms into adenosin diphosphate (ADP ) and diphosphate groups Pi. For a detailed
description of this complex process, see, e.g., [3]. Here ATP hydrolysis only is taken into
account. According to [1], the chemical potential (the change in partial free energy per mole) is
given by

Achem = −30558 + RT ln
[ADP ][Pi]

[ATP ]
, (45)

where [..] means the concentration of the corresponding chemical component. R represents the
gas constant and T is the absolute temperature.

5.1. 1D model of muscle fibre without coupling

Firstly, the couplings is not taken into account – in the matrix L (42) diagonal terms only are
non-zero and positive. The diffusion is also neglected – LJμ = 0.

Let the muscle fibre be modelled as a 1D continuum of the initial length l0. Its actual length
after growth, remodelling and loading let be l, where for the isometric process l̇ = 0. The
relaxed length - after growth and remodelling – is then lrx. For the corresponding deformation
gradients P = γe⊗ e,F = ϕe⊗ e,∇p = εe⊗ e, where e is the unit vector in the muscle fibre
direction, the following relations can be written

γ =
lrx

l0
, ϕ =

l

lrx
, ε =

l

l0
. (46)
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For small deformations (J = 1), free energy has the simple form

f = frx =
1

2
k(ϕ − 1)2 + ρ−1AchemY. (47)

Another form of the free energy for living tissues is following

f =
k

λ

(
e

λ
2
(ϕ−1)2 − 1

)
+ ρ−1AchemY, (48)

where for λ → 0 the same result as in (47) is obtained. The equations (37), (42) have then the
form

σe =
∂f

∂ϕ
, (49)

σdis = hϕ̇, (50)
C − E = gγ̇γ−1, E = f − ϕσ, (51)

Ẏ = LAchem, (52)

k̇ = − 1

m

∂f

∂k
, (53)

futher in this study the new simpler notation of the Onsager’s coefficients is introduced as
follows h ≡ LσF , g ≡ LV E

−1, L ≡ LY A, m ≡ LKA
−1 and k ∼ K represents the stiffness

as an internal variable. Equations (51), (52), (53) have the form

l̇rx = l3rx

(C − ρ−1AchemY ) + k
λ
e

λ
2
( l

lrx
−1)2 [λ l

lrx
( l

lrx
− 1) − 1] + k

λ

gl2rx + hl2
, (54)

k̇ = − 1

m

[
1

λ

(
e

λ
2
( l

lrx
−1)2 − 1

)]
, (55)

Ẏ = LAchem. (56)

If the dimensionless variables are introduced

y = k

√
|m|
g

; x ≡ ϕ =
l

lrx
; t̃ =

t√
g|m|

, C̃ = (C − ρ−1AchemY )

√
|m|
g

, (57)

then for h = 0 the following system of equations defining the nonlinear dynamical system is
obtained

dx

dt̃
= x′ = −x

{
C̃ +

y

λ
e

λ
2
(x−1)2 [λx(x − 1) − 1] +

y

λ

}
, (58)

dy

dt̃
= y′ = sgn(m)

[
−1

λ
(e

λ
2
(x−1)2 − 1)

]
. (59)

Equation (56) is omitted. It is assumed that C̃(t̃) is a general function of the dimensionless
time. In [8] it is shown that the system (58), (59) is unstable even if h �= 0 . Therefore it is
needed to admit some sort of coupling.
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5.2. 1D model of muscle fibre with coupling

Relations (42) offer a lot of possibilities even if Onsager’s and Curie’s constrains are respected.
One of the simpler possibilities is to assume that the diffusion processes affect the change of k.
After introducing the notations

−LKμ∇(Δμ̄) = rμ, r̃μ = rμm, (60)

the second equation defining the discussed dynamical system is obtained in the form

y′ = sgn(m)

[
r̃μ − 1

λ
(e

λ
2
(x−1)2 − 1)

]
. (61)

This system is stable, as proved in [8], and exhibits interesting properties. It can also be tuned
so as to simulate successfully the behaviour of muscle fibres during isometric stimulation.

6. Conclusion

This study shows how different processes running in muscle tissue can be included in the the-
ory of growth and remodelling [2]. The equations (42) allow to take into account chemical
processes, mass transport and changes of internal variables, which correspond to the processes
on the micro scale.

It was shown that

* the outer remodelling force C may represent running chemical processes in the
case of muscle contraction. In other applications, it can have different meaning,
which can be clarified using the mentioned approach.

* the quantity rμ used in [9] and shown to be necessary for the stability of the
system, can result from diffusion processes running within the tissue.

* taking into account more couplings (42), very complex models allowing to de-
scribe more precisely the behaviour of materials can be obtained.

The approach of this study is general enough to be applied to other types of continua, e.g., to
different smart materials. This represents a challenge for future research, together with the anal-
ysis of the properties of the corresponding dynamical systems, such as their stability, attractors,
bifurcations et cetera.
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List of symbols

u internal energy [J kg−1]
ξ,K, → k internal variables
a = [ai(x, t)] space of state variables
s entropy [J kg−1K−1]
T absolute temperature [K]
ρ density [kg m−3]
q heat flux [W m−2]
F , Fe forces conjugated to a
F, → ϕ deformation gradient in GRT [2]
A, → A affinity conjugate to ξ (in GRT to K)
J , Jk mass flux [kg m−2s−1]

w = Ẏ , wr velocity of the rth reaction [mol m−3s−1]
f, frx Helmholtz’s free energy [J kg−1]
σs rate of the internal entropy [J K−1s−1m−3]
μ̄k, μk chemical potential of the kth component [J kg−1], [J mol−1]
Mk molar mass [kg mol−1]
νk, νkr stoichiometric coefficients [3]
ck concentration [3]
A,Ar affinity of the rth reaction [J mol−1]
Achem = [Ar]
E, → E Eshelby type tensor [J kg−1]
p, ∇p, → ε placement
v,V continuum velocity, growth and remodelling velocity resp.
P, → γ growth and remodelling tensor
σ, σe, σdis Piola stress tensor [J kg−1]
C, → C outer remodelling couple
r inner source of heat [J kg−1s−1]
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