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Abstract

Two virtual models of the ŠKODA 21 Tr low-floor trolleybus intended for the investigation of vertical dynamic
properties during the simulation of driving on an uneven road surface are presented in the article. In order to
solve analytically vertical vibrations, the trolleybus model formed by the system of four rigid bodies with seven
degrees of freedom coupled by spring-damper elements is used. The influence of the asymmetry of a sprung
mass, a linear viscous damping and a general kinematic excitation of wheels are incorporated in the model. The
analytical approach to solving the ŠKODA 21 Tr low-floor trolleybus model vibrations is a suitable complement
of the model based on a numerical solution. Vertical vibrations are numerically solved on the trolleybus multibody
model created in the alaska simulation tool. Both virtual trolleybus models are used for the simulations of driving
on the track composed of vertical obstacles. Conclusion concerning the effects of the usage of the linear and the
nonlinear spring-damper elements characteristics are also given.
c© 2009 University of West Bohemia. All rights reserved.
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1. Introduction

Computational models of vehicles, which are used in vehicle dynamics tasks, can be of a var-
ious complexity and therefore it is efficient to have a variety of models with respect to their
application. General approaches to the vehicle modelling and their reviews can be found in [1]
and [12]. The advantage of simple models (concerning kinematic structure and number of de-
grees of freedom) is mainly the shorter computational time of particular analyses. They can be
used for a sensitivity analysis, optimization [15], parameters identification etc. The problems
of interaction [5] are also studied very often with this sort of models. On the other hand more
complex multibody models [4, 6, 10] can be used for detailed analyses and for the investigation
of the chosen structural elements behaviour. The most of published works are based on numer-
ical simulations with the created vehicle models and the analytical methods, which can bring
faster and more accurate analyses, are omitted.

In connection with previous contributions to the investigation of vertical vibration of vehi-
cles under various conditions [2, 3, 7, 8, 9, 10, 11, 13, 14, 16, 17] this article deals with the
analytical and numerical solutions of vertical vibration of the empty ŠKODA 21 Tr low-floor
trolleybus (see fig. 1) models.
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Fig. 1. The ŠKODA 21 Tr low-floor trolleybus

The usage of the simplified analytical model for the dynamic analysis of road vehicles is
justified because of the transparency of a mathematical model, easier implementation and the
possibility of a better understanding of the mechanical system behaviour. Analytical solution
enables to put the monitored quantities (displacements, velocities, accelerations) in the form of
continuous function of time (enabling the analytical performing of derivative and integration)
in contradiction to the discrete form of those quantities obtained by means of the numerical so-
lution. Relations for the calculation of the monitored quantities in the whole investigated period
of time are obtained during the analytical solving of the equations of motion. The numerical
method requires to solve the equations of motion for each integrating step of the investigated
period of time. In order to solve numerically the vertical vibration the trolleybus multibody
model created in the alaska simulation tool is used.

The main differences between the models are in the consideration of linear characteristics
of spring-damper elements and in the impossibility of including the bounce of the tire from the
road surface in the analytical model.

2. Analytical solution

For the analytical solution the trolleybus model is considered to be a system of four rigid bodies
with seven degrees of freedom, coupled by spring and dissipative elements (see fig. 2), taking
into account a linear viscous damping and the influence of asymmetry (e.g. mass distribution)
and with general kinematic excitation of the individual wheels. The rigid bodies correspond to
the sprung mass (trolleybus body) and the unsprung masses – the rear axle (including wheels)
and the front half axles (including wheels). Spring and dissipative elements model the tire-road
surface contact (two front and four rear wheels), the air springs in the axles suspension (two
front and four rear ones) and the hydraulic shock absorbers in the axles suspension (two front
and four rear ones). As it was already mentioned, characteristics of the spring and dissipative
elements are supposed to be linear.

In general case, for the considered trolleybus model it is possible to put the equations of
motion in the matrix form (see [14])

M · q̈(t) + B · q̇(t) + K · q(t) = f(t), (1)

where q(t) = [ϕ, θ, z, z1, z2, z3, ϕ3]
T , q̇(t), q̈(t) are the vectors of the generalized coordinates

(ϕ is the angular displacement of the trolleybus body – sprung mass – around the longitudinal
x-axis, θ is the angular displacement of the trolleybus body around the lateral y-axis, z is the

352



P. Polach et al. / Applied and Computational Mechanics 3 (2009) 351–362

Fig. 2. The scheme of the trolleybus analytical model

vertical displacement of the trolleybus body, z1 is the vertical displacement of the left front half
axle, z2 is the vertical displacement of the right front half axle, z3 is the vertical displacement
of the rear axle, ϕ3 is the angular displacement of the rear axle around the longitudinal axis)
and their derivatives with respect to the time, M is the mass matrix (diagonal elements: Ix – the
moment of inertia with respect to x axis of the trolleybus body, Iy – the moment of inertia with
respect to y axis of the trolleybus body, m – the mass of the trolleybus body, m1 – the mass of
the left front half axle, m2 – the mass of the right front half axle, m3 – the mass of the rear axle,
I3x – the moment of inertia with respect to x axis of the rear axle; other elements in case of a
symmetric distribution of the sprung mass mik = mki = 0 for i �= k and for i = 1, 2, . . ., 7,
k = 1, 2, . . ., 7; in case of an asymmetric distribution of the sprung mass m12 = m21 = −Dxy,
where Dxy is the product of inertia with respect to x and y axes of the trolleybus body), B
is the damping matrix, K is the stiffness matrix (due to the generality all the elements are
considered not to be zero), f(t) = [fi(t)]

T for i = 1, 2, . . ., 7, is the vector of the generalized
forces (kinematic excitation function) [14].

After dividing the individual equations by the respective diagonal element of mass matrix M
(suitable mathematical adjustment due to the solution procedure) and after the Laplace integral
transform for the zero initial conditions, i.e. in time t = 0 q(0) = 0 and q̇(0) = 0, the system
of differential equations is transformed to the system of algebraic equations

S · q̄(s) = f̄(s), (2)

where s is the parameter of transform, q̄(s) are the images of the vector of generalized co-
ordinates q(t) and f̄(s) are the images of the vector of generalized forces f(t) divided by the
respective diagonal element of mass matrix M.

It holds for the elements of the matrix S:
aij = s2 + βij · s + κij , for i = j,
aij = δij · s2 + βij · s + κij , for i �= j and for i = 1, 2 and j = 1, 2,
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aij = βij · s + κij , for i �= j and for i = 1, 2 and j = 3, 4, . . . , 7,
for i �= j and for i = 3, 4, . . . , 7 and j = 1, 2, . . . , 7,

where κij =
kij

mii
and βij =

bij

mii
can be calculated from the original elements of stiffness matrix

K and damping matrix B after division of the equations by the diagonal elements of mass
matrix M, δ12 = −Dxy

Ix
and δ21 = −Dxy

Iy
are the elements respecting the influence of asymmetric

distribution of the mass of the trolleybus body.
For solving the system of algebraic equations (2), i.e. for determining the images of gener-

alized coordinates q̄j(s), j = 1, 2, . . ., 7, it is possible, due to a small number of equations, to
apply the Cramer rule

q̄j(s) =
Dj(s)

D(s)
, (3)

where D(s) is the determinant of matrix S and Dj(s) is the determinant which originates from
determinant D(s) by replacing the j-th column of elements aij (i = 1, 2, . . ., 7) of determinant
D(s) with the column of right sides of the system of linear algebraic equations (2), i.e. with the
elements of vector f̄(s). This method is suitable regarding the process of further solving, i.e.
obtaining the vector of generalized coordinates q(t) by the inverse transform.

For the expansion of determinant D(s) of matrix S into the form of the polynomial

D(s) =

n=14∑
i=0

An−i · sn−i, (4)

where the polynomial degree n is given by the double of degrees of freedom of the mechanical
system (i.e. n = 14), it is necessary to determine coefficients An−i for i = 1, 2, . . ., n (An = 1).
This operation can be carried out by means of symbolic calculations using the specialized math-
ematical software.

By evaluating determinant Dj(s) the relation for images q̄j(s) of function qj(t) is obtained

q̄j(s) =
7∑

i=1

(−1)j+i · f̄i(s) ·
Dji(s)

D(s)
, for j = 1, 2, . . ., 7, (5)

where determinant Dji(s) is a subdeterminant of order n/2−1 of determinant D(s) correspond-
ing to element aij of matrix S.

The polynomial corresponding to subdeterminant Dji(s) is determined using the same algo-
rithm as the polynomial (4) if the value of element aij is changed to aij = (−1)i+j , the other ele-
ments ai,j 
=r (r = 1, 2, . . ., n) in the row i are set to zero ai,j 
=r = 0 (r = 1, 2, . . ., n) and the other
elements ai
=k,j (k = 1, 2, . . ., n) in the column j are set to zero ai
=k,j = 0 (k = 1, 2, . . ., n),
while the values of the other elements ai
=k,j 
=r (k = 1, 2, . . ., n, r = 1, 2, . . ., n) of determinant
D(s) do not change

Dji(s) =

m∑
r=0

dji,m−r · sm−r, for j = 1, 2, . . ., n/2, i = 1, 2, . . ., n/2, (6)

where m = n − 1 for i = j,
for i �= j and for i = 1, 2 and j = 1, 2,

and m = n − 2 for i �= j and for i = 1, 2 and j = 3, 4, . . . , 7,
for i �= j and for i = 3, 4, . . . , 7 and j = 1, 2, . . . , 7,

and coefficients dji,m−r for r = 0, 1, . . ., m can be determined using the symbolic calculations.
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In order to determine the original qj(t) of corresponding image q̄j(s) it is suitable the relation
(5) to be transformed to the form of convolution. That is why it is necessary to calculate the
zero points sk of the polynomial of determinant D(s) [14, 18]. In the given case the zero points
sk are supposed to be in the form of the complex conjugate numbers sk = Re{sk} + i · Im{sk}
and sk+1 = Re{sk}− i · Im{sk}, for k = 1, 3, . . ., n−1 (i is the imaginary unit). By calculating
zero points of the polynomial (4) it is possible, using the product of root factors, to put the
polynomial in the form of the product of the quadratic polynomials

[s − (Re{si} + i · Im{si})]· [s − (Re{si} − i · Im{si})] = s2+pi ·s+ri, for i = 1, 2, . . ., n/2,
(7)

where ri = (Re {si})2 + (Im{si})2 and pi = −2 · Re{si}.
According to (4) it yields

D(s) =

n=14∑
k=0

An−k · sn−k =

n/2∏
i=1

(
s2 + pi · s + ri

)
. (8)

Then it is possible to transfer the ratio of the determinants in equation (5) to the sum of
partial fractions (supposing simple roots) in the form [14]

Dji(s)

D(s)
=

m∑
r=0

dji,m−r · sm−r

n/2∏
k=1

(s2 + pk · s + rk)

=

n/2∑
r=1

⎡
⎣(Kji,r · s + Lji,r) ·

n/2∏
k=1
k �=r

(s2 + pk · s + rk)

⎤
⎦

n/2∏
k=1

(s2 + pk · s + rk)

, (9)

where constants Kji,r and Lji,r for j = 1, 2, . . ., n/2, i = 1, 2, . . ., n/2, r = 1, 2, . . ., n/2, can
be determined from the condition of the coefficients equality at identical powers of parameter s
in numerators of fraction on both sides of equation (9).

The condition of the numerators equality (9) can be expressed by the relation

m∑
r=0

dji,m−r · sm−r =

n/2∑
r=1

⎡
⎢⎢⎢⎣(Kji,r · s + Lji,r) ·

n/2∏
k=1

(s2 + pk · s + rk)

s2 + pr · s + rr

⎤
⎥⎥⎥⎦ , (10)

where m (m = n − 1 or m = n − 2) is the order of the polynomial of determinant Dji(s), j is
the designation of the component of vector of the images of generalized coordinates q̄j(s) (j =
1, 2, . . ., n/2) and i is the designation of the component of vector of the images of the general-
ized forces (divided by the respective diagonal element of mass matrix M) (i = 1, 2, . . ., n/2).

As the denominator of fraction on the right side of equation (10) is the divisor of the nu-
merator (i.e. division remainder is equal zero), this fraction can be, regarding the relation (8),
modified to the form [14, 18]

n/2∏
k=1

(s2 + pk · s + rk)

s2 + pi · s + ri
=

n∑
k=0

An−k · sn−k

s2 + pi · s + ri
=

n∑
k=2

ti,n−k · sn−k, for i = 1, 2, . . . , n/2, (11)
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where ti,n−1 = 0,
ti,n−2 = An = 1,
ti,n−k = An−k+2 − pi · ti,n−k+1 − ri · ti,n−k+2, for k = 3, 4, . . ., n, i = 1, 2, . . ., n/2.

Then equation (10) can be put in the form

m∑
r=0

dji,m−r · sm−r =

n/2∑
r=1

[
(Kji,r · s + Lji,r) ·

n∑
k=2

tr,n−k · sn−k

]
, (12)

for j = 1, 2, . . ., n/2, i = 1, 2, . . ., n/2.
After performing the multiplication of the polynomials on the right side of equation (12) and

comparing the coefficients of identical powers of parameter s on both sides of equation (12) a
system of n algebraic equations for unknown coefficients Kji,r and Lji,r for j = 1, 2, . . ., n/2,
i = 1, 2, . . ., n/2 and r = 1, 2, . . ., n/2 is obtained

n/2∑
r=1

(Kji,r · tr,n−k−1 + Lji,r · tr,n−k) = dji,n−k, for k = 1, 2, . . ., n, (13)

where for k = n coefficients tr,n−k−1 = tr,−1 = 0, r = 1, 2, . . ., n/2, represent the division
remainders of equation (11) – see [14] or [18].

By analytical solving the system of algebraic equations (13) – see [14] – unknown coeffi-
cients Kji,r and Lji,r are determined and equation (9) (using relation (10)) can be put in the
form

Dji(s)

D(s)
=

n/2∑
k=1

Kji,k · s + Lji,k

s2 + pk · s + rk

, for j = 1, 2, . . ., n/2, i = 1, 2, . . ., n/2. (14)

By means of this relation equation (5) for the calculation of the image of generalized coor-
dinates q̄j(s), for j = 1, 2, . . ., n/2, can be modified into the form

q̄j(s) =

n/2∑
i=1

(−1)j+i · f̄i(s) ·
n/2∑
k=1

Kji,k · s + Lji,k

s2 + pk · s + rk
. (15)

The denominator of the fraction of equation (15) can be modified to the form

s2 + pk · s + rk = (s + βk)
2 + Ω2

k, for k = 1, 2, . . ., n/2, (16)

where Ω2
k = ω2

k − β2
k is the damped natural frequency, ω2

k = rk is the undamped natural
frequency and βk = −pk

2
is the coefficient of linear viscous damping.

Using formula (16) equation (15) can be written in the form

q̄j(s) =

n/2∑
i=1

(−1)j+i · f̄i(s) ·
n/2∑
k=1

Kji,k · s + Lji,k

(s + βk)
2 + Ω2

k

, for j = 1, 2, . . ., 7. (17)

Further modification may result in the final relation for image q̄j(s) for j = 1, 2, . . ., 7

q̄j(s) =

n/2∑
i=1

(−1)j+i · f̄i(s) ·
n/2∑
k=1

[
Kji,k ·

s + βk

(s + βk)
2 + Ω2

k

+ (18)

+
Lji,k − βk · Kji,k

Ωk

· Ωk

(s + βk)
2 + Ω2

k

]
.
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After the inverse transform of the relation (18), the function of generalized coordinate qj(t),
for j = 1, 2, . . ., 7, in the form of the sum of convolution integrals is obtained

qj(t) =

n/2∑
i=1

(−1)j+i ·
n/2∑
k=1

{
Kji,k ·

∫ t

0

fi(τ)

mii
· e−βk·(t−τ) · cos [Ωk · (t − τ)] · dτ+

+
Lji,k − βk · Kji,k

Ωk
·
∫ t

0

fi(τ)

mii
· e−βk·(t−τ) · sin [Ωk · (t − τ)] · dτ

}
, (19)

where the elements of the excitation force vector are generally given by the relations

f1(t) = 0,

f2(t) = 0,

f3(t) = 0,

f4(t) = k10 · h1(t) + b10 · ḣ1(t), (20)
f5(t) = k20 · h2(t) + b20 · ḣ2(t),

f6(t) = k301 · h31(t) + k302 · h32(t) + k401 · h41(t) + k402 · h42(t) +

+b301 · ḣ31(t) + b302 · ḣ32(t) + b401 · ḣ41(t) + b402 · ḣ42(t),

f7(t) = −k301 · h31(t) · y31 − k302 · h32(t) · y32 + k401 · h41(t) · y41 + k402 · h42(t) · y42 +

−b301 · ḣ31(t) · y31 − b302 · ḣ32(t) · y32 + b401 · ḣ41(t) · y41 + b402 · ḣ42(t) · y42,

where h1(t), h2(t), h31(t), h32(t), h41(t), h42(t) are the functions describing the shape of the
road surface unevenness under the tires, ḣ1(t), ḣ2(t), ḣ31(t), ḣ32(t), ḣ41(t), ḣ42(t) are the first-
order derivatives of the functions h1(t), h2(t), h31(t), h32(t), h41(t), h42(t), k10, k20, k301, k302,
k401, k402 are the (linear) radial stiffnesses of the tires, b10, b20, b301, b302, b401, b402 are the (linear)
coefficients of radial damping of the tires and y31, y32, y41, y42 are the lateral coordinates of the
centres of mass of the rear tires. Subscripts 1 and 10 belong to the left front tire, subscripts 2
and 20 to the right front tire, subscripts 31 and 301 to the left rear outside tire, subscripts 32 and
302 to the left rear inside tire, subscripts 41 and 401 to the right rear inside tire and subscripts
42 and 402 to the right rear outside tire (see fig. 2). See [13] or [14] for more details.

3. Numerical model

The multibody model of the ŠKODA 21 Tr low-floor trolleybus is created in the alaska 2.3
simulation tool. As it is the first comparison of the results of the simulations performed with
the analytical model and with the numerical model there is not utilized the most complex multi-
body model (formed by 35 rigid bodies and two superelements mutually coupled by 52 joints –
e.g. [7, 8]; see fig. 3), but the simplest multibody model created in the alaska 2.3 simulation
tool (e.g. [7]; see fig. 4). The multibody model of the trolleybus is formed by 29 rigid bodies
mutually coupled by 29 kinematic joints. The rigid bodies correspond generally to the vehicle
individual structural parts. The number of degrees of freedom in kinematic joints is 47.

The rigid bodies are defined by inertia properties (mass, centre of mass coordinates and mo-
ments of inertia). The air springs and the hydraulic shock absorbers in the axles suspension and
the bushings in the places of mounting some trolleybus structural parts are modelled by connect-
ing the corresponding bodies by nonlinear spring-damper elements. When simulating driving
on the uneven road surface the contact point model of tires is used in the multibody model; ra-
dial stiffness and radial damping properties of the tires are modelled by nonlinear spring-damper
elements considering the possibility of bounce of the tire from the road surface [3, 8, 9].
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Fig. 3. Kinematic scheme of the multibody model of the ŠKODA 21 Tr trolleybus

Fig. 4. Visualization of the ŠKODA 21 Tr trolleybus multibody model in the alaska 2.3 simulation tool

The kinematic scheme of the multibody model of the ŠKODA 21 Tr low-floor trolleybus
is shown in fig. 3, where circles represent kinematic joints (BUNC – unconstrained, BSPH –
spherical, UNI12 – universal around axes 1 and 2, UNI23 – universal around axes 2 and 3,
PRI3 – prismatic in axis 3 direction, REV1 – revolute around axis 1, REV2 – revolute around
axis 2, REV3 – revolute around axis 3; axes of the coordinate system are considered according
to fig. 4) and quadrangles represent rigid bodies.
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4. Simulations results

In order to illustrate the vertical dynamic response calculated by means of the analytical ap-
proach and numerical simulation with the trolleybus virtual models, the driving on the artifi-
cially created test track according to the ŠKODA VÝZKUM methodology was chosen (e.g. [2,
3, 7, 8, 9, 10]). The test track consisted of three standardized artificial obstacles (in compliance
with the Czech Standard ČSN 30 0560 Obstacle II: h = 60 mm, R = 551 mm, d = 500 mm)
spaced out on the smooth road surface 20 meters one after another. The first obstacle was run
over only with right wheels, the second one with both and the third one only with left wheels
(see fig. 5). Results of the drive at the trolleybus models’ speed 40 km/h (the usual trolleybus
speed according to the ŠKODA VÝZKUM methodology at the driving on the artificially created
test track) are shown.

20 m

MODE: RIGHT BOTH LEFT

20 m

Obstacles

Fig. 5. Visualization of the ŠKODA 21 Tr trolleybus multibody model in the alaska 2.3 simulation tool

In the course of the test drives simulations time histories of the vertical displacements (see
fig. 2) of the trolleybus body z (fig. 6), the left front half axle z1 (fig. 7), the right front half axle
z2 (fig. 8) and the rear axle z3 (fig. 9) were monitored (among others).

On the basis of the monitored quantities given in figs 6 to 9 it is generally possible to say that
in the results obtained using nonlinear numerical model extreme values of the time histories of
the vertical displacements are higher, the decay of dynamic responses of the unsprung masses
to the kinematic excitation of the wheels is slower and the decay of dynamic response of the
sprung mass to the kinematic excitation of the wheels is faster than in the results obtained using
the linear model. But the results are not as different as it was supposed.
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Fig. 6. Time histories of the vertical displacement of the trolleybus body: of the linear model of the
trolleybus – left, of the nonlinear model of the trolleybus – right
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Fig. 7. Time histories of the vertical displacement of the left front half axle: of the linear model of the
trolleybus – left, of the nonlinear model of the trolleybus – right
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Fig. 8. Time histories of the vertical displacement of the right front half axle: of the linear model of the
trolleybus – left, of the nonlinear model of the trolleybus – right

0 1 2 3 4 5 6
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time [s]

D
is

pl
ac

em
en

t [
m

]

Vertical displacement of the rear axle

0 1 2 3 4 5 6
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time [s]

D
is

pl
ac

em
en

t [
m

]

Vertical displacement of the rear axle
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left, of the nonlinear model of the trolleybus – right
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On the basis of the test simulations with the trolleybus model created in the alaska simu-
lation tool the following facts were stated: the consideration of the only linear force-velocity
characteristics of the shock absorbers in the linear model of the trolleybus has the greatest influ-
ence on the extreme values of the vertical displacement of the sprung mass, the consideration
of the only linear radial stiffness of the tires in the linear model has the greatest influence on
the extreme values of the displacements of the unsprung masses, the consideration of the only
linear force-deformation characteristics of the air springs and (at the trolleybus models speed
40 km/h) the nonconsideration of the possibility of the tire bounce from the road surface in the
linear model have the greatest influence on the decay of the dynamic response of the trolleybus
body and the consideration of the only linear radial stiffness of the tires in the linear model has
the greatest influence on the decay of the responses of the unsprung masses.

5. Conclusion

Two virtual models of the ŠKODA 21 Tr low-floor trolleybus intended for the investigation of
vertical dynamic properties during the simulation of driving along the uneven road surface are
presented in the article. The first model and its dynamic response are based on the analytical
solution, the second one is based on the multibody modelling and the numerical simulations.
Both models have various advantages and together they are complex tools for the vehicle ver-
tical dynamics investigation. The linear analytical model is suitable for the fast and accurate
analysis and can be employed mainly for the optimization or the control tasks. The complex
multibody model can be used in further steps for a detailed manoeuvre analysis and a particular
structural elements evaluation. Differences between the results obtained using both models are
discussed.
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[9] Polach, P., Hajžman, M., Multibody simulations of trolleybus vertical dynamics and influences of
tire radial characteristics, Proceedings of The 12th World Congress in Mechanism and Machine
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Biomechanics of the Technical University of Łódź, 2007, Vol. 1, pp. 371–378.
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ŠKODA 21 Tr Low-floor Trolleybus Model, Proceedings of the National Colloquium with In-
ternational Participation Dynamics of Machines, Prague, Institute of Thermomechanics AS CR,
2006, pp. 169–174. (in Czech)
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