
Applied and Computational Mechanics 4 (2010) 215–224

Numerical simulation of airflow through the model
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J. Prokopováa,b,∗, M. Feistauera, J. Horáčekb, V. Kučeraa
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Abstract

This work deals with numerical simulation of flow in time-dependent 2D domains with a special interest in me-
dical applications to airflow in human vocal folds. The mathematical model of this process is described by the
compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the Arbitrary Lagrangian-
Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space
semidiscretization of the governing equations in the ALE formulation. The time discretization is carried out with
the aid of a linearized semi-implicit method with good stability properties. We present some computational results
for flow in a channel with a prescribed periodic motion of a part of the channel walls.
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1. Introduction

The simulation of compressible flow in time dependent domains plays an important role in many
areas, for example development of aircrafts and turbines, in civil engineering, car industry or
medicine. The presented work is concerned with medical applications by modelling the airflow
in human vocal folds, where the airflow energy is transferred into the acoustic energy generating
a voice source signal. The mechanism of such energy transfer is not properly known. The
airflow in the glottal region has been modelled mostly as incompressible (see, e.g. [8]). The
model of the compressible flow was used in [7] for numerical simulation of the flow field in the
glottal region by the finite volume method.

We describe here the numerical technique for the solution of the compressible Navier-Stokes
equations written in the ALE (Arbitrary Lagrangian-Eulerian) form, using the discontinuous
Galerkin finite element method (DGFEM). This work also creates the basis of the further work
in the direction of fluid-structure interaction, when the flow problem is coupled with elastic
behaviour of vocal folds.

2. Governing equations

We deal with compressible flow in a bounded domain Ωt ⊂ R
2 depending on time t ∈ [0, T ].

We assume that the boundary of Ωt consists of three disjoint parts: ∂Ωt = ΓI ∪ΓO∪ΓWt , where
ΓI and ΓO represent the inlet and outlet and ΓWt represents moving impermeable walls.
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We consider the Navier-Stokes equations in the conservative form [3]:

∂w

∂t
+

2∑
s=1

∂fs(w)

∂xs

=
2∑

s=1

∂Rs (w,∇w)

∂xs

in Ωt, t ⊂ [0, T ] , (1)

where

w = (ρ, ρv1, ρv2, E)T ∈ R
4, (2)

fs(w) = (ρvs, ρv1vs + δ1sp, ρv2vs + δ2sp, (E + p)vs)
T , s = 1, 2,

Rs (w,∇w) =

(
0, τs1, τs2, τs1v1 + τs2v2 + k

∂θ

∂xs

)T

, s = 1, 2,

τij = λδij divv + 2μdij(v), dij(v) =
1

2

(
∂vi

∂xj
+

∂vj

∂xi

)
, i, j = 1, 2.

We use the following notation: n — the unit outer normal to ∂Ωt, z – wall velocity, ρ – density,
p – pressure, E – total energy per unit volume, (v1, v2)

T – velocity vector, θ – absolute tempe-
rature, cv > 0 – specific heat at constant volume, γ > 1 – Poisson adiabatic constant, μ > 0,
λ – viscosity coefficients, k > 0 – heat conduction coefficient. We set λ = −2μ/3.

System (1) is completed by the thermodynamical relations

p = (γ − 1)(E − ρ |v|2 /2), (3)

θ =

(
E

ρ
− 1

2
|v|2

)
/cv, (4)

initial condition w(x, 0) = w0(x), x ∈ Ωt, and boundary conditions:

Inlet ΓI : ρ|ΓI×(0,T ) = ρD, (5)
v|ΓI×(0,T ) = vD = (vD1, vD2)

T ,
2∑

j=1

(
2∑

i=1

τijni

)
vj + k

∂θ

∂n
= 0 on ΓI × (0, T );

Moving wall ΓW : vΓW ×(0,T ) = z,
∂θ

∂n
= 0; (6)

Outlet ΓO :

2∑
i=1

τijni = 0,
∂θ

∂n
= 0, j = 1, 2. (7)

The vector functions fs are inviscid fluxes of the quantity w in the directions xs and Rs

represent viscous terms, s = 1, 2. In the sequel, we shall use the following relations for the
fluxes fs :

fs(w) = As(w)w, where As(w) =
Dfs

Dw
, s = 1, 2. (8)

Furthermore, the term Ri(w,∇w) can be expressed in the form

Ri(w,∇w) =
2∑

j=1

Kij(w)
∂w

∂xj
, (9)

where Kij are 4 × 4 matrices dependent on w and independent of ∇w (cf. [3]).
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For viscous flows we define the so-called Reynolds and Mach numbers, defined as

Re =
U�L�ρ�

μ�
, M =

|v|
a

, (10)

where U� is the characteristic velocity, L� is the characteristic length, ρ� is the characteristic
density, μ� is the characteristic viscosity and a =

√
γp/	 is the speed of sound.

3. ALE formulation

In order to simulate flow in a time-dependent domain, we employ the Arbitrary Eulerian-
Lagrangian method. Let us denote reference configuration by Ωref = Ω0 for the computational
domain at the initial time (see Fig. 1). A smooth, one-to-one mapping of the reference con-
figuration onto the computational domain Ωt at time t (the so-called current configuration) is
denoted by At (cf. [5]), i.e.

At : Ω̄ref −→ Ω̄t, i.e. At : X 	−→ x = x(X, t) = At(X). (11)

Fig. 1. ALE mapping scheme

Based on this mapping we define the ALE velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0, (12)

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ω̄t.

Moreover for a function f = f(x, t) defined for x ∈ Ωt and t ∈ [0, T ], we introduce the ALE
derivative

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), where f̃(X, t) = f(At(X), t), X ∈ Ω0. (13)

By the chain rule we obtain

DAf

Dt
=

∂f

∂t
+ z · ∇f =

∂f

∂t
+ div (zf) − f div z, (14)

which yields the ALE form of the Navier-Stokes equations:

DAw

Dt
+

2∑
s=1

∂gs(w)

∂xs
+ w divz =

2∑
s=1

∂Rs (w,∇w)

∂xs
, (15)

where gs, s = 1, 2, are modified inviscid fluxes

gs(w) = fs(w) − zsw, s = 1, 2. (16)
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4. Space semidiscretization by the discontinuous Galerkin method

Let Tht be a partition of Ωt formed by a finite number of triangles, whose interiors are mutually
disjoint. Let I ⊂ Z

+ be a numbering of triangles in Tht. If two different elements Ki, Kj ∈ Tht

share a common face, we call them neighbours and set Γij = ∂Ki ∩ ∂Kj . For i ∈ I we define
s(i) = {j ∈ I; Kj is a neighbour of Ki}. We denote all boundary faces by Sj, where j ∈
Ib ⊂ Z

− = {−1,−2, . . .} and set γ(i) = {j ∈ Ib; Sj is a face of Ki}. Furthermore, we define
S(i) = s(i) ∪ γ(i) and γD(i) = {j ∈ Ib; Dirichlet boundary condition prescribed on Γij}. The
diameter of Γij will be denoted by d(Γij). By nij we shall denote the unit outer normal to the
boundary of Ki on the face Γij.

We shall seek the approximate solution in the finite dimensional space

Sht = Sr,−1(Ωt, Tht) = {v; v|K ∈ Pr(K) ∀K ∈ Tht}4, (17)

where Pr(K) is the space of all polynomials on K of degree ≤ r. For v ∈ Sht we set vij =
v|Γij

= trace of v|Ki
on Γij, 〈v〉ij = 1

2
(vij + vji), [v]ij = vij − vji, the average and the jump

on an edge, respectively. By (·, ·) we denote the L2(Ω)-scalar product.
In the derivation of the discrete problem we proceed in the following way. The system of

governing equations (15) is multiplied by a test function ϕ ∈ Sht and integrated over each
Ki ∈ Tht. We apply Green’s theorem, sum over all i ∈ I .

4.1. Discretization of convective terms

The discretization of convective terms is carried out as in [2, 4]. We define the convective form

bh (w, ϕ) = −
∑

Ki∈Tht

∫
Ki

2∑
s=1

gs(w) · ∂ϕ

∂xs

dx + (18)

∑
Ki∈Tht

∑
j∈S(i)

∫
Γij

Hg(w|Γij
, w|Γji

, nij) · ϕ dS.

Here Hg(·, ·, ·) is an apropriate numerical flux, which approximates the physical flux through
an edge Γij. In practice, we use the Vijayasundaram numerical flux, which has a suitable form
for linearization:

Hg(wL, wR, n) = P
+ ((wL + wR)/2, n)wL + P

− ((wL + wR)/2, n)wR. (19)

Here P(w, n) :=
∑2

s=1 (As(w) − zsI) ns, where As(w) = Dfs(w)
Dw

=
(

∂fsi(w)
∂wj

)m

i,j=1
. I is the

unit matrix and P
+, P

− denote the positive and negative parts of P — see [3], Section 3.3.4.

4.2. Discretization of viscous terms

For the treatment of second order viscous nonlinear terms the incomplete interior penalty
Galerkin (IIPG) scheme [1] is used. We proceed similarly as in the case of convective terms.
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After some manipulation we obtain the following viscous form

ah(w, ϕ) =
∑
i∈I

∫
Ki

2∑
s=1

Rs(w,∇w) · ∂ϕ

∂xs
dx − (20)

∑
i∈I

∑
j∈s(i)
j<i

∫
Γij

2∑
s=1

〈Rs(w,∇w)〉ijn(s)
ij · [ϕ]ij dS −

∑
i∈I

∑
j∈γD(i)

∫
Γij

2∑
s=1

Rs(w,∇w)n
(s)
ij · ϕ dS.

4.3. Penalty terms

To ensure good properties of the resulting numerical scheme we introduce the interior and
boundary penalty form

Jh(w, ϕ) =
∑
i∈I

∑
j∈s(i)
j<i

∫
Γij

σ[w]ij · [ϕ]ij dS +
∑
i∈I

∑
j∈γD(i)

∫
Γij

σw · ϕ dS, (21)

where the weight σ is defined as σ|Γij
= CW

Re d(Γij )
, with a constant CW > 0 and the Reynolds

number Re. Integrals over the Dirichlet boundary are balanced by terms enforcing the Dirichlet
boundary conditions:

lh(w, ϕ) =
∑
i∈I

∑
j∈γD(i)

∫
Γij

σwB · ϕ dS. (22)

The state wB is determined on the basis of the Dirichlet boundary data and extrapolation.
We can finally write the discrete (IIPG) formulation of system (15). Find wh(t) ∈ [Sht]

4

such that

∑
Ki∈Tht

∫
Ki

DAwh(t)

Dt
· ϕ dx + bh(wh(t), ϕ) +

∑
Ki∈Tht

∫
Ki

divz (wh(t) · ϕ) dx+

ah(wh(t), ϕ) + Jh(wh(t), ϕ) = lh(wh, ϕ), ∀ϕ ∈ Sht.

(23)

5. Time discretization

Scheme (23) represents a system of ordinary differential equations, which must be discretized
with respect to time. We use the method developed in [2]. A backward Euler method is used
and the nonlinear terms in the scheme are linearized.

We consider a partition 0 = t0 < t1 < t2 . . . of the interval (0, T ) and set τk = tk+1− tk. We
use the symbol wk

h for the approximation of wh(tk). The ALE time derivative is approximated
by

DAwh

Dt
(x, tk+1) ≈

wk+1
h (x) − ŵk

h(x)

τk

, x ∈ Ωhtk+1
, (24)

where ŵj
h(x) = wj

(
Atj

(
A−1

tk+1

)
(x)

)
, x ∈ Ωhtk+1

. The convective form in (23) is linearized
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using the homogeneity of the Euler fluxes and the Vijayasundaram numerical flux:

bh(w
k+1
h , ϕ) ≈ b̃h(ŵ

k
h, w

k+1, ϕ) = −
∑
i∈I

∫
Ki

2∑
s=1

Dgs(ŵ
k
h)

Dw
wk+1

h · ∂ϕh

∂xs

dx + (25)

∑
i∈I

∑
j∈S(i)

∫
Γij

{
P

+
(
〈ŵk

h〉ij, nij

)
wk+1

hij + P
− (

〈ŵk
h〉ij, nij

)
wk+1

hji

}
· ϕ dS.

Viscous terms (20) are linearized in a similar fashion using the fact that the viscous terms
Ri(w,∇w) can be expressed in the form (9). Thus, we linearize the nonlinearities in the form
ah(w

k+1
h , ϕ) in the following way:

Ri(w
k+1
h ,∇wk+1

h ) ≈
2∑

j=1

Kij(ŵ
k
h)

∂wk+1
h

∂xj

. (26)

Finally, the interior and boundary penalty jump terms Jh are linear with respect to wk+1
h and

can be treated implicitly. Hence, we obtain a numerical scheme which requires the solution of
only one large sparse linear system per time level. This system is solved by the block-Jacobi
preconditioned GMRES method.

6. Numerical experiments

We consider compressible flow in a channel, whose geometry is inspired by the shape of vocal
folds and a part of supraglottal spaces as shown in Figure 2. The considered sizes of the domain
are summarised in Table 1. The lower channel wall between points A and B is changing the
shape according to the given function of time and axial coordinate:

y(x, t) = (a1 + at)

[
sin

(
3π

2
+ π

x − xA

xC − xA

)
+ 1

]
+ d, x ∈ [xA, xC ], (27)

y(x, t) = 2(a1 + at) cos

(
π

2

x − xC

xB − xC

)
+ d, x ∈ [xC , xB],

at = a2 sin (2πft) , t ∈ [0, T ]; a1 = 0.18, a2 = 0.015,

where f = 5.38 · 103 is dimensionless frequency of the vocal folds oscillation corresponding to
the real frequency 100 Hz. The motion of the upper wall of the channel is treated in a similar
way. This movement is interpolated to the rest of the domain resulting in the ALE mapping At.
The computation for the same computational domain and input data can be found in [7], where
similar computations were carried out by the finite volume method and assuming the symmetry
of the flow field. We considered the following input parameters and boundary conditions for the
airflow: inlet flow velocity 4 m/s, viscosity 15 · 10−6 Pa · s, density 1.225kg/m3, outlet pressure
9 7611 Pa, Re = 10 453, k = 2.428 · 10−2, cv = 721.428.

Fig. 2. Computational domain (cf. [7])
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Table 1. Dimensions of the computational domain

x [–] y [-] x [mm] y [mm]
A 1.75 0.4 35 8
B 2.4 0.4 48 8
C 2.3 y(xC, t) 46 20y(xC, t)

gmin – 0.01 – 0.2
gmax – 0.07 – 1.4

L 8 – 160 –
H/2 – 0.4 – 8
H1 – 0.4 – 8

Fig. 3. Detail of triangulation in several time instants

Figures 3, 4, 5 show the used triangulation (consisting of 1829 vertices and 3480 elements)
and computed streamlines and flow velocity vectors at different dimensionless time instants
t = 502.5, 544.5, 586.5, 628.5 during the fourth period of the motion. In Figures 4 and 5 we
can observe large vortex formations. These vortices are slowly convected downstream through
the domain. The velocity flow field pattern is not periodic and not axisymmetric in spite the
computational domain is axisymmetric and the motion of the channel walls is periodic.

Numerical experiments with the formulated problem were also carried out on meshes with
different structure having 2 804 vertices and 5 325 elements or 3 469 vertices and 6 645 ele-
ments. In all cases quadratic elements were used. It is possible to say that the quality of the
results obtained on these meshes is comparable.
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Fig. 4. Streamlines at several time instants (t = 502.5, 544.5, 586.5, 628.5)

7. Conclusion

The numerical technique based on the use of the discontinuous Galerkin method and the special
program code for solving the 2D unsteady Navier-Stokes equations for viscous compressible
flow in time-dependent domains has been developed. This method has been applied to the
numerical solution of the airflow in a simplified model of the human glottis geometry with
prescribed oscillations of the vocal folds. Computations show that it is not possible to simplify
the mathematical model supposing an axisymmetry of the solution, because the nonsymmetric
flow structure is developed even in the axisymmetric computational domain.

Future work will be focused on a more complex modelling of the real geometry of the glottis
and the vocal tract and mainly on the application of the fluid-structure interaction consisting in
the solution of coupled system describing flow and structure behaviour.
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