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Complex model of the lower urinary tract
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Abstract

The complex model of the lower part of the urinary tract is introduced. It consists of the detrusor smooth muscle
cell model and the detailed 1D model of the urethra flow. The nerve control is taken into account. In future this
model will allow to simulate the influence of different drugs and mechanical obstructions in the bladder neck and
urethra. A general muscle model involving the calcium dynamics in the smooth muscle cell and the growth and
remodelling theory will be shortly introduced. For the modelling calcium dynamics the approach of Koenigsberger
published in Biophysical Journal (Koenigsberger, M., Sauser, R., Seppey, D., Beny, J.-L., Meister, J.-J., Calcium
dynamics and vosomotion in arteries subject to isometric, isobaric and isotonic conditions, Biophysical Journal
95 (2008) 2 728–2 738.) was adopted. The model includes the ATP consumption calculation according to Hai et
al. (Hai, C. M., Murphy, R. A., Adenosine 5’-triphosphate consumption by smooth muscle as predicted by the
coupled four-state crossbridge model, Biophysical Journal 61(2) (1992) 530–541.). The main part is devoted to
the development of a simple bladder model and the detrusor contraction during voiding together with the detailed
model of the urethra flow.
c© 2012 University of West Bohemia. All rights reserved.
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1. Introduction

The voiding is a very complex process. As we can see from Fig. 1, it consists of the transfer of
information about the state of the bladder filling in to the spinal cord. Next part is the sending of
the action potentials to the smooth muscle cells of the bladder. Even this process is not simple
and includes the spreading of the action potential along the nerve axon and the transmission of
the mediator (Ach – acetylcholine) in the synapse. The action potential starts the process of the
smooth muscle contraction.

The smooth muscles have a lot of different forms in contradiction with the striated muscles.
They are present in vesicles, arteries and others hollow organs.

Although the own biological motor – sliding between actin and myosin fueled by hydrolysis
of ATP – is the same here as well as in striated and heart muscles, there are important differences
between these basic types of muscles and also between smooth muscles in different organs. The
sliding between actin and myosin causing the change of the form (length) of the muscle cell and
its stiffness can be observed as a kind of growth and remodeling. This approach described e.g.
in [15] and [14] is used in this model. It should be mentioned that a lot of different smooth
muscle cells (SMC) models exist. They are based either on Huxley model where the calcium
dynamics is not taken into account in details or on the contrary the calcium dynamics and the
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Fig. 1. The simplified scheme of the lower part of the urinary tract. SMC – smooth muscle cell, ICC –
interstitial cell of Cajal (in this contribution are not taken in account), Ach – acetocholine, Q – flux of
the urine

phosphorilation is modeled very precisely but the mechanochemical coupling is based on the
work on [6] where the stress in the muscle cell depends linearly on the amount of the bonded
crossbridges either phosphorilized or unphosphorilized (e.g., [7,10], where the model is applied
to the SMC in the vessels).

To be able to describe the very complex processes in the SMC in the efficient form it is
necessary to use the irreversible thermodynamics. This approach was described in [16].

Using all these approaches the algorithm published in [13] was developed. In this contribu-
tion we join on the results of this paper. The simple model of the whole bladder and the detailed
1D model of the urethra flow is added. Some examples of the numerical experiments are shown.

2. Bladder contraction

As it was already mentioned, the whole model of the bladder contraction is described in [12].
It consists of the following parts:

• Model of the time evolution of the Ca2++ concentration – five equations [7]. The Ca2++
intracellular concentration is the main control parameter for the next processes and fi-
nally for the smooth muscle contraction. Its increase depends on the flux Jagonist of the
mediator (in this case acetylcholine) via the nerve synapse.

• Model of the time evolution of the phosporilation of the light myosin chain – three equa-
tions [6]. The muscle cell contraction is caused by the relative movement of the myosin
and actin filaments. For this it is necessary that the phophorilation of the mentioned light
myosin chain on the heads of the myosin occurs. Knowing this process also the time
evolution of the ATP consumption (Jcycl) can be determined. The ATP (adenosintriphos-
phate) is the main energy source for the muscle contraction.
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3. Model of the own contraction based on the GRT and the irreversible thermodynamics

The growth and remodelling theory [4] together with the laws of irreversible thermodynamics
with internal variables was applied in [16] to describe the mechano-chemical coupling of the
smooth muscle cell contraction. The product of the chemical reaction affinity (the ATP hydrol-
ysis) with its rate plays an important role in the discussed model. Further it can be assumed that
the rate of the ATP hydrolysis depends on the ATP consumption. The corresponding equations
in the non-dimensional form are following:

ẋ =
g

h
[τ ′ − z(x − 1)] = k1 [τ ′ − z(x − 1)] , (1)

ẏ =
y

k2

[
xτ ′ − 1

2
z(x − 1)2 + C ′

]
, (2)

where

ż = sgn (m) ·
[
r − 1

2
z(x − 1)2

]
, x =

l′

l′r
, y = l′r, z = k, (3)

l

l0
= x · y, k′ = k

√
|m|
g

, l′r =
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, t′ =
t√
g|m|

.

l0 is the initial length of the muscle fibre, lr its length after stimulation when the fibre is unloaded
(s. c. resting length), l the actual length (when the contraction is isometric this is the input
value), t′ the stress and k is the fibre stiffness. The non-dimensional values are labeled with the
single quote mark. The others symbols are the parameters. The most important parameter is C ′.
Using the irreversible thermodynamics we can obtain the following relations
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where for the afinity of the chemical reactions especially for the hydrolysis of the ATP gilt

achem = −Q · Y. (5)

Q is the constant and Y is the concentration of ATP. For its time evolution gilts [11]

Ẏ = −QQ · Y + L · Jcycle. (6)

Here QQ is the damping parameter. Than the whole model is finished because the ATP con-
sumption Jcycl as a function of the Ca2+ concentration in the cytoplasm was already determined.

4. Bladder and voiding model

To model the contraction of the bladder during the voiding process we will use the very simple
model according [9] and [1]. The bladder is modelled as a hollow sphere with the output
corresponding to the input into urethra.
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For the pressure in the bladder the following formula is introduced in [9]

p =
Vsh

3V
· τ, τ =

F

S
, (7)

where Vsh is the volume of the wall, V the inner volume, τ stress in the muscle fibre, S the inner
surface and F the force in the muscle cell.

For the flux q gilts

q =
dV

dt
, (8)

where ρ is the density of the fluid.
Using the formulas for the isotonic contraction, we can at first obtain the relation for the

volume. It gilts

l′ =
l

l0
= x · y (9)

and then
V = κ · (x · y)3, (10)

where κ is the constant which in the theoretical case if only one cell will occupy the circum-
ference of the spherical bladder will be 1/6π2. Putting this formula into the equation for q and
using the e quations for the derivatives of x and y mentioned before we obtain the equation,
from which we can calculate τ :

τ =

q
3κ(x·y)2

+
[
k1zy

2(x − 1) + zy2x
2k2

(x − 1)2 − xy
k2

C ′
]

k1y + x2y
k2

. (11)

For the pressure gilts then

p =
Vsh

3κ · (x · y)3
·

q
3κ(x·y)2

+
[
k1zy

2(x − 1) + zy2x
2k2

(x − 1)2 − xy
k2

C ′
]

k1y + x2y
k2

. (12)

This will be putted into the equations for the isotonic contraction.

5. Urethral flow

We now briefly introduce a problem describing fluid flow through the elastic tube represented
by hyperbolic partial differential equations with the source term. In the case of the male urethra,
the system based on model in [17] has the following form

at + qx = 0,

qt +
(

q2

a
+ a2

2ρβ

)
x

= a
ρ

(
a0

β

)
x

+ a2

2ρβ2 βx − q2

4a2

√
π
a
λ(Re),

(13)

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown flow rate
(we also denote v = v(x, t) as the fluid velocity, v = q

a
), ρ is the fluid density, a0 = a0(x) is

the cross-section of the tube under no pressure, β = β(x, t) is the coefficient describing tube
compliance and λ(Re) is the Mooney-Darcy friction factor (λ(Re) = 64/Re for laminar flow).
Re is the Reynolds number defined by

Re =
ρq

μa

√
4a

π
, (14)
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where μ is fluid viscosity. This model contains constitutive relation between the pressure and
the cross section of the tube

p =
a − a0

β
+ pe, (15)

where pe is surrounding pressure.
Presented system (13) can be written in the compact matrix form

ut + [f(u, x)]x = ψ(u, x), (16)

with q(x, t) being the vector of conserved quantities, f(q, x) the flux function and ψ(q, x) the
source term. This relation represents the balance laws. For the following consideration, we
reformulate this problem to the nonconservative form.

5.1. Nonconservative problems

We consider the nonlinear hyperbolic problem in nonconservative form

ut + A(u)ux = 0, x ∈ R, t ∈ (0, T ), (17)
u(x, 0) = u0(x), x ∈ R.

The numerical schemes for solving problems (17) can be written in fluctuation form

∂Uj

∂t
= − 1

Δx
[A−(U−

j+1/2,U
+
j+1/2) + A(U−

j+1/2,U
+
j−1/2) + A+(U−

j−1/2,U
+
j−1/2)], (18)

where A±(U−
j+1/2,U

+
j+1/2) are so called fluctuations. They can be defined by the sum of waves

moving to the right or to the left. The directions are dependent on the signs of the speeds of
these waves, which are related to the eigenvalues of matrix A(u). In what follows, we use the
notation U+

j+1/2 and U−
j+1/2 for the reconstructed values of unknown function. Reconstructed

values represent the approximations of limit values at the points xj+1/2. The most common
reconstructions are based on the minmod function (see for example [8]) or ENO and WENO
techniques [3].

The reconstruction can be applied to each component of u. But this approach does not work
well in general. It is better to apply the reconstruction to the characteristic field of u. It means
that each jump is decomposed to the eigenvectors r of Jacobian matrix A(u).

Uj+1 − Uj =
m∑

p=1

αp
j+1/2r

p
j+1/2. (19)

Then the reconstruction based on minmod function can be defined by following

U+
j+1/2 = Uj+1 +

∑
p

φp,+
I+1/2α

p
j+1/2r

p
j+1/2, (20)

U−
j+1/2 = Uj +

∑
p

φp,−
I+1/2α

p
j+1/2r

p
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where
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I+1/2 = ∓1

2

(
1 + sgn(θp

I+1/2)
)

min(1, |θp
I+1/2|) (21)
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and

I =

{
j − 1/2, if sp

j+1/2 ≥ 0,

j + 3/2, if sp
j+1/2 < 0.

(22)

The function θp
j+1/2 can be determined by the following way

θp
j+1/2 =

αp
j+1/2r

p
j+1/2 · r

p
I+1/2

αp
I+1/2r

p
I+1/2 · r

p
I+1/2

. (23)

When the problem (17) is derived from the conservation form (16), i.e. f ′(u) = A(u) is the
Jacobi matrix of the system, fluctuations can be defined as follows

A(U−
j+1/2,U

+
j−1/2) = f(U−

j+1/2) − f(U+
j−1/2),

A−(U−
j+1/2,U

+
j+1/2) = F−

j+1/2 − f(U−
j+1/2),

A+(U−
j−1/2,U

+
j−1/2) = f(U+

j−1/2) − F+
j−1/2.

(24)

5.2. Decompositions based on augmented system

This procedure is based on the extension of the system (13) by other equations (for simplicity
we omit viscous term). This was derived in [5] for the shallow water flow. The advantage
of this step is in the conversion of the nonhomogeneous system to the homogeneous one. In
the case of urethra flow we obtain the system of four equations, where the augmented vector
of unknown functions is w = [a, q, a0

β
, β]T . Furthermore we formally augment this system

by adding components of the flux function f(u) to the vector of the unknown functions. We
multiply balance law (16) by Jacobian matrix f ′(u) and obtain following relation

f ′(u)ut + f ′(u)[f(u)]x = f ′(u)ψ(u, x). (25)

Because of f ′(u)ut = [f(u)]t we obtain hyperbolic system for the flux function

[f(u)]t + f ′(u)[f(u)]x = f ′(u)ψ(u, x). (26)

In the case of the urethra fluid flow modelling we add only one equation for the second compo-
nent of the flux function i.e. φ = av2 + a2

2ρβ
(the first component q is unknown function of the

original balance law), which has the form

φt +

(
−v2 +

a

2ρβ

)
(av)x + 2vφx −

2av

ρ

(
a0

β

)
x

− a2v

ρβ2
βx = 0. (27)

Finally augmented system can be written in the nonconservative form⎡⎢⎢⎢⎢⎣
a
q
φ
a0

β

β

⎤⎥⎥⎥⎥⎦
t

+

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0 0

− q2

a2 + a
ρβ

2 q
a

0 −a
ρ
− a2

ρβ2

0 − q2

a2 + a
ρβ

2 q
a

2 q
ρ
− aq

ρβ2

0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

a
q
φ
a0

β

β

⎤⎥⎥⎥⎥⎦
x

= 0, (28)

briefly wt + B(w)wx = 0, where matrix B(w) has following eigenvalues

λ1 = v −
√

a

ρβ
, λ2 = v +

√
a

ρβ
, λ3 = 2v, λ4 = λ5 = 0 (29)
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and corresponding eigenvectors

r1 =

⎡⎢⎢⎢⎢⎣
1
λ1

(λ1)2

0
0

⎤⎥⎥⎥⎥⎦, r2 =

⎡⎢⎢⎢⎢⎣
1
λ2

(λ2)2

0
0
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0
0
1
0
0

⎤⎥⎥⎥⎥⎦, r4 =

⎡⎢⎢⎢⎢⎣
−a

ρλ1λ2

0
a
ρ

1
0

⎤⎥⎥⎥⎥⎦, r5 =

⎡⎢⎢⎢⎢⎢⎣
−a2

ρβ2λ1λ2

0
a2

2ρβ2

0
1

⎤⎥⎥⎥⎥⎥⎦. (30)

We have five linearly independent eigenvectors. The approximation is chosen to be able
to prove the consistency and provide the stability of the algorithm. In some special cases this
scheme is conservative and we can guarantee the positive semidefiniteness, but only under the
additional assumptions (see [2]).

The fluctuations are then defined by

A−(U−
j+1/2,U

+
j+1/2) =

[
0 1 0 0 1
0 1 0 0 1

]
·

m∑
p=1,sp,n

j+1/2
<0

γp
j+1/2r

p
j+1/2,

A+(U−
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+
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[
0 1 0 0 1
0 1 0 0 1

]
·
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p=1,sp,n

j+1/2
>0

γp
j+1/2r

p
j+1/2,

A(U+
j−1/2,U

−
j+1/2) = f(U−

j+1/2) − f(U+
j−1/2) − Ψ(U−

j+1/2,U
+
j−1/2),

(31)

where Ψ(U−
j+1/2,U

+
j−1/2) is a suitable approximation of the source term and rp

j+1/2 are suitable
approximations of the eigenvectors (30).

5.3. Steady states

The steady state for the augmented system means B(w)wx = 0, therefore wx is a linear com-
bination of the eigenvectors corresponding to the zero eigenvalues. The discrete form of the
vector Δw corresponds to the certain approximation of these eigenvectors. It can be shown [2]
that

Δ
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Φ
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Ā2
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0
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where Ā =
Aj+Aj+1

2
, β̄ =

βj+βj+1

2
, Ã2 =

A2
j+A2

j+1

2
, Ṽ 2 = |VjVj+1|, V̄ 2 =

(
Vj+Vj+1

2

)2

and

λ̃1λ2 = −Ṽ 2 +
Āβ̄

ρβj+1βj
, λ1λ2 = −V̄ 2 +

Āβ̄

ρβj+1βj
. (33)

Therefore we use vectors on the RHS of (32) as approximations of the fourth and fifth eigen-
vectors of the matrix B(w) to preserve general steady state.

5.4. Positive semidefiniteness

Positive semidefiniteness of this scheme is shown in [5] for the case of shallow water equation.
It is based on a special choice of approximations of the eigenvectors (30). This, in the case of
urethra flow, is more complicated because of the structure of the eigenvectors. Some necessary
conditions for approximation of these eigenvectors are presented in [2].
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pressure outflow

mediator flux Ca++ concentration

Fig. 2. Time evolution of the quantities at the bladder neck

6. Numerical experiment

Now we present numerical experiment based on the system of differential equations described
detrusor smooth muscle cell model (12 equations) and urethral flow (30 equations). The equa-
tions describing urethral flow are based on spatial high-resolution discretization of the urethra
(15 finite volumes) described in section 5.2. The parameters used in this experiment are the
same as in [12]. The Fig. 2 illustrate time evolution of the quantities at the bladder neck. For
the further application it is necessary to fit the parameters because of non-dimensionality of the
equations describing the muscle contraction.

1. For the simplicity the precious modelling of the synapse is neglected and the mediator
flux Jagonist is chosen – see Fig. 2. The IC units are used although in the medical paper
are used for intravesical pressure cmH2O (1 cmH2O = 0.1 kPa) and for the outflow ml/s.
The concentration is measured in μM where M = mol/l.

2. At the Fig. 3 there are shown the cross-section area, velocity and flow rate along the whole
urethra in two different times after beginning of voiding.
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Fig. 3. Time evolution of the quantities through the urethra (cross section area, velocity, flow rate, tube
compliance)

7. Conclusion

We presented the complex model of the lower part of the urinary tract. A simple bladder model
and the detrusor contraction model were developed during voiding together with the detailed
model of urethra flow. The urethra flow was described by the high-resolution positive semidef-
initeness method, which preserves general steady states. For the practical application the iden-
tification of the parameters is necessary.
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