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Abstract

This article presents the results of numerical analysis of elastic damage of thin laminated long fiber-reinforced
composite plate consisting of unidirectional layers which is loaded by uniformly distributed pressure. The analysis
has been performed by means of the finite element method (FEM). The numerical implementation uses layered
plate finite elements based on the Kirchhoff plate theory. System of nonlinear equations has been solved by means
of the Newton-Raphson procedure. Evolution of damage has been solved using the return-mapping algorithm
based on the continuum damage mechanics (CDM). The analysis was performed using own program created
in MATLAB. Problem of laminated fiber-reinforced composite plate fixed on edges for two different materials
and three different laminate stacking sequences (LSS) was simulated. Evolution of stresses vs. strains and also
evolution of damage variables in critical points of the structure are shown.
c© 2012 University of West Bohemia. All rights reserved.
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1. Introduction

Composite materials are now common engineering materials used in a wide range of applica-
tions. They play an important role in the aviation, aerospace and automotive industry, and are
also used in the construction of ships, submarines, nuclear and chemical facilities, etc. The
meaning of the word damage is quite broad in everyday life. In continuum mechanics the term
damage is referred to as the reduction of the internal integrity of material due to generating,
spreading and merging of small cracks, cavities and similar defects. In the initial stages of the
deformation process the defects (microcracks, microcavities) are very small and relatively uni-
formly distributed in the microstructure of a material. If the damage reaches the critical level
(depends on type of loading and used material), subsequent growth of defects will concentrate
in some of the defects already present in material [7]. Damage is called elastic, if the mate-
rial deforms only elastically (in macroscopic level) before the occurrence of damage, as well
as during its evolution. This damage model can be used if the ability of the material to de-
form plastically is low. Fiber-reinforced polymer matrix composites can be considered as such
materials [11]. Commercial FEM software can perform analyses with many types of material
nonlinearities, such as plasticity, hyperelasticity, viscoplasticity, etc. However, almost no com-
mercial software (except for ABAQUS) contains a module for damage analysis of composite
materials.

The goal of this paper is to present the numerical results of elastic damage analysis of thin
laminated composite plate consisting of unidirectional long fiber-reinforced layers which is
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loaded by uniformly distributed pressure. The analysis was performed by own software created
in MATLAB programming language. This software can perform numerical analysis of elastic
damage based on continuum damage mechanics utilizing finite element method using layered
plate finite elements based on the Kirchhoff plate theory. Locking effect was not removed, since
this is a rather complicated issue.

2. Theoretical and numerical modeling background

A number of material modeling strategies exist to predict failure in laminated composites, sub-
jected to static or impulsive loads. Broadly, they can be classified as [12, 15, 19]:

• strength-based failure criteria,

• fracture mechanics approach (based on energy release rates),

• plasticity or yield surface approach,

• damage mechanics approach.

Strength-based failure criteria (failure criteria approach) are commonly used with FEM to
predict failure events in composite structures. These approaches are based on the equivalent
stresses or strains in the critical failure areas. Numerous criteria have been derived to relate in-
ternal stresses and experimental measures of material strength to the onset of failure (maximum
stress or strain, Hill, Hoffman, Tsai-Wu, etc.). These classical criteria implemented in most
commercial FE codes are not able to physically capture the failure mode. Some of them cannot
deal with materials having a different strength in tension and compression. The Hashin criteria
are briefly reviewed in [11] and improvements were proposed by Puck and Schurmann [14]
over Hashin’s theories are examined.

However, few criteria can represent several relevant aspects of the failure process of lami-
nated composites, e.g. the increase on apparent shear strength when applying moderate values
of transverse compression, or detrimental effect of the in-plane shear stresses in failure by fiber
kinking.

2.1. Continuum damage mechanics

From a physical point of view, damage represents surface discontinuities in form of microcracks
or volume discontinuities in form of cavities in a material. They are formed as the material
undergoes an increasing loading. The objective of the damage mechanics is to predict, through
mechanical variables, the response of a material in the presence of damage. Damage is initiated
at certain stress level and it generally increases with increasing stress from the virgin state up to
a macroscopic crack initiation or failure.

Continuum Damage Mechanics (CDM) considers damaged materials as a continuum, in
spite of heterogenity, micro-cavities, and micro-defects. The response to the loading condi-
tions is determined on the basis of the constitutive relations between macroscopic variables
(e.g. stress, strain) and internal variables which model, on a macroscopic scale, the irreversible
changes occurring at the microscopic level.

We consider a volume of material free of damage if no cracks or cavities can be observed
at the microscopic scale. The opposite state is the fracture of the volume element. Theory
of damage describes the phenomena between the virgin state of material and the macroscopic
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Fig. 1. Representative volume element for damage mechanics

onset of crack [6, 16]. The representative volume element must be of sufficiently large size
compared to the inhomogenities of the composite material. In Fig. 1 this volume is depicted.
One section of this element is related to its normal and to its area S. Due to the presence of
defects, an effective area S̃ for resistance of load can be found. Total area of defects is therefore

SD = S − S̃. (1)

The local damage related to the direction n is defined as:

D =
SD

S
. (2)

For isotropic damage, the dependence on the normal n can be neglected, i.e.

D = Dn ∀n. (3)

We note that damage D is a scalar assuming values between 0 and 1. For D = 0 a material
is undamaged, for 0 < D < 1 a material is damaged, for D = 1 complete failure occurs.
The quantitative evaluation of damage is not a trivial issue, it must be linked to a variable that
is able to characterize the phenomenon. Several papers can be found in literature where the
constitutive equations of the materials are a function of a scalar variable of damage [2, 3]. For
the formulation of a general multidimensional damage model it is necessary to generalize the
scalar damage variables. It is therefore necessary to define corresponding tensorial damage
variables that can be used for general states of deformation and damage [18].

2.2. Numerical modeling

One of the most powerful computational methods for structural analysis of composites is the
FEM. The starting point should be a “validated” FE model, with a reasonably fine mesh, correct
boundary conditions, material properties, etc. [1]. As a minimum requirement, the model is
expected to produce stress and strains that have reasonable accuracy to those of the real structure
prior to failure initiation. In spite of a great success of the finite and boundary element methods
as effective numerical tools for the solution of boundary-value problems on complex domains,
there is still growing interest in the development of new advanced methods. Many meshless
formulations are becoming popular due to their high adaptivity and a low cost to prepare input
data for numerical analysis [4, 5, 13].
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2.3. FEM formulation for Kirchhoff plate

Plate models are used to study structural components which are subjected to bending loads and
their thickness is smaller than the others dimensions. This characteristic allows representing
the plate using the reference middle surface. Therefore the geometric domain used for the
formulation of plate models is the middle surface.

A plate resists transverse loads by means of bending, exclusively. The flexural properties of
a plate depend greatly upon its thickness in comparison with other dimensions. Plates may be
classified into three groups according to the ratio a/t, where a is a typical dimension of a plate
in a plane and t is a plate thickness. The first group is represented by thick plates having ratios
a/t ≤ 8 . . . 10. The second group refers to plates with ratios a/t ≥ 80 . . . 100. These plates are
referred to as membranes. The most extensive group represents an intermediate type of plates,
so-called thin plates with 8 . . . 10 ≤ a/t ≤ 80 . . . 100 [17].

One of the most widely used theory for thin plates is the Kirchhoff (classical) plate theory.
The Kirchhoff (classical) laminate plate theory and the first-order shear deformation theories
describe with reasonable accuracy the kinematics of most laminates [19]. The details of deriva-
tion of equations governing the behavior of thin plates are given in [17]. The equations are
represented here for clarity.

In this subsection formulation for plate element based on the Kirchhoff plate theory for
symmetric balanced laminate will be presented. The most widely used plate elements in FEM
are linear and quadratic elements with 3 degrees of freedom (DOFs) in node: w, θx, θy. When
using linear four-node elements, one element has 12 DOFs and 12 shape functions are required.

Fig. 2. Four-node Kirchhoff plate element and DOFs in node

It is worth noting that shape functions must have C1 continuity. Displacements within the
element are interpolated as

w = Nû (4)

where w is displacement in given point of the element, N = [N1, N2, . . . , N3xn] is vector of
values of shape functions in this point, n is number of nodes in element and

û =
[
ŵ1, θ̂x1, θ̂y1, . . . , ŵn, θ̂xn, θ̂yn

]T

is vector of nodal displacements.
Matrix B, which in the case of plate elements gives the relation between curvatures and

nodal displacements, has the form of

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2N1

∂x2

∂2N2

∂x2

∂2Nn

∂x2

∂2N1

∂y2

∂2N2

∂y2
. . .

∂2Nn

∂y2

2
∂2N1

∂x∂y
2
∂2N2

∂x∂y
2
∂2Nn

∂x∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

154
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The element stiffness matrix for unidirectional element has the form of

k =

∫
A

BTDKB dA. (6)

Matrix DK gives the relation between internal moments and curvatures. More details about
this matrix are given e.g. in [9]. The element stiffness matrix is integrated numerically, most
often by means of Gauss quadrature [10]. The element stiffness matrix calculation for lay-
ered rectangular element with edges parallel to x and y axis by means of Gauss quadrature is
performed as follows

k =

NL∑
n=1

∫ x2

x1

∫ y4

y1

BTDKB dy dx ≈

≈
NL∑
n=1

nGx∑
i=1

x2 − x1

2

nGy∑
j=1

y4 − y1

2
BT (xinti , yintj)DKB(xinti , yintj)WiWj , (7)

xinti =
x2 − x1

2
xGi +

x2 + x1

2
, (8)

yintj =
y4 − y1

2
yGj +

y4 + y1

2
, (9)

where NL is number of layers, x1, x2, y1, y4 are x and y coordinates of nodes, which are in
subscript, xGi, yGj are Gauss points, Wi, Wj are corresponding weights and nGx and nGy is
number of Gauss points in x- and y-axis direction.

3. Damage model used

The model for fiber-reinforced lamina mentioned next was presented by Barbero and de Vivo [2]
and is suitable for fiber-reinforced composite materials with polymer matrix. On the lamina
level these composites are considered as ideal homogenous and transversely isotropic. All
parameters of this model can be easily identified from available experimental data. It is assumed
that damage in principal directions is identical with the principal material directions (1, 2, 3)
throughout the damage process. This is due to the fact that the dominant modes of damage
are micro-cracks, fiber breaks and fiber-matrix debond, all of which can be conceptualized as
cracks parallel or perpendicular to the fiber direction [3]. Therefore the evolution of damage
is solved in the lamina coordinate system. The model predicts the evolution of damage and its
effect on stiffness and subsequent redistribution of stress.

3.1. Damage surface and damage potential

Damage surface is defined by tensors J and H [3]

J =

⎡
⎣ J11 0 0

0 J22 0
0 0 J33

⎤
⎦ , H = [H1, H2, H3] . (10)

Damage surface is similar to the Tsai-Wu damage surface [6], and it is commonly used
for predicting failure of fiber-reinforced lamina with respect to experimental material strength
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values. Damage surface and damage potential have the form of [3]

g(Y, γ) =
√

J11Y 2
1 + J22Y 2

2 + J33Y 2
3 +

√
H1Y 2

1 + H2Y 2
2 + H3Y 2

3 − (γ + γ0), (11)

f(Y, γ) =
√

J11Y 2
1 + J22Y 2

2 + J33Y 2
3 − (γ + γ0), (12)

where the thermodynamic forces Y1, Y2 and Y3 can be calculated by means of relations

Y1 =
1

Ω2
1

(
S̄11

Ω4
1

σ2
1 +

S̄12

Ω2
1Ω

2
2

σ1σ2 +
S̄66

Ω2
1Ω

2
2

σ2
6

)
,

Y2 =
1

Ω2
2

(
S̄22

Ω4
2

σ2
2 +

S̄12

Ω2
1Ω

2
2

σ1σ2 +
S̄66

Ω2
1Ω

2
2

σ2
6

)
, (13)

Y3 = 0.

where stresses and components of matrix S̄ are defined in the lamina coordinate system. Matrix
S̄ gives the strain-stress relations in the effective configuration [2]. Ω1 and Ω2 are components
of a second-order tensor Ω =

√
I − D, called the integrity tensor. The eigenvalues Di of

damage tensor D describe the load-carrying area reduction on the three planes orthogonal to
the principal direction of the tensor D. Equations (11) and (12) can be written for particular
simple stress states: tension and compression in fiber direction, tension in transverse direction,
in-plane shear. Tensors J and H can be derived in terms of material strength values.

3.2. Hardening parameters

In the present damage model isotropic hardening is considered and hardening function was used
in the form of

γ = c1

[
exp

(
δ

c2

)
+ 1

]
. (14)

where δ denotes the hardening variable. The hardening parameters γ0, c1 and c2 are determined
by approximating the experimental stress-strain curves for in-plane shear loading. If this curve
is not available, we can reconstruct it using the function

σ6 = F6 tanh

(
G12

F6
γ6

)
, (15)

where F6 is the in-plane shear strength, G12 is the in-plane initial (undamaged) shear modulus
and γ6 is the in-plane shear strain (in the lamina coordinate system). This function represents
experimental data very well.

3.3. Critical damage level

Reaching of critical damage level is dependent on stress values in lamina. If in a point in lamina
only normal stresses in the fiber direction and across the fibers (i.e. normal stresses in lamina
coordinate system) occur, then simply comparing the values of damage variables with critical
values of damage variables for given material at this point is sufficient. The damage has reached
the critical level if at least one of the values of D1, D2 in the point of lamina is greater or equal
to its critical value. The magnitude of these critical damage parameter values can be estimated
from statistical models of the failure process of each type of loading. If in given point of lamina
also shear stress occurs (in lamina coordinate system), it is additionally necessary to compare
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the value of the product of (1−D1)(1−D2) with value of ks parameter from Table 3 for given
material. If the value of this product is less or equal to ks, the damage has reached the critical
level. Value of ks is determined from the relation between damaged in-plane shear modulus G∗

12

and undamaged in-plane shear modulus G12

ks =
G∗

12

G12
. (16)

3.4. Implementation of numerical method

The Newton-Raphson method was used for solving the system of nonlinear equations. Evo-
lution of damage has been solved using the return-mapping algorithm described in [2]. The
input values are strains and strain increments in lamina coordinate system, state variables D1,
D2, and δ in integration point from the start of the last performed iteration, C̄ matrix (gives
the stress-strain relations in the effective configuration [3]) and damage parameters related to
damage model. The output variables are D1, D2, and δ, stresses and strains in lamina coordi-
nate system in this integration point at the end of the last performed iteration. Another output is
damaged tangent constitutive matrix Ced in lamina coordinate system, which reflects the effect
of damage on the behavior of structure. Flowchart of the return-mapping algorithm used in
numerical damage analysis is described in Fig. 3.

Fig. 3. Flowchart of the return-mapping algorithm used in numerical damage analysis of thin composite
plates
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4. Numerical example and results

One problem for two different materials and three different laminate stacking sequences (LSS)
was simulated in order to study damage of laminated long fiber-reinforced composite plates
consisting of unidirectional layers. Composites consist of carbon fibers embedded in epoxy
matrix. Composite plate fixed on its edges with dimensions of 125 × 125 × 2.5 mm and LSS
of [0, 45,−45, 90]S, [0, 90, 45,−45]S and [45, 0,−45, 90]S was loaded by uniformly distributed
pressure p = 0.5 MPa perpendicular to the surface of the plate (Fig. 4). Own program created
in MATLAB language was used for this analyses.

Fig. 4. Force and displacement boundary condition of the analyzed plate and schematic illustration of
the LSS [0, 45,−45, 90]S

Material properties, damage parameters, hardening parameters and critical values of damage
parameters [2] are given in Tables 1–3. Subscripts t and c in Table 3 denote critical damage
parameter values for tensile and compressive loading, respectively. Critical value for damage
parameter D2 is listed only for tensile loading because it is difficult to find accurate model for
estimating the critical value of this parameter for transverse compressive loading. In this model
it is assumed that critical value of this parameter for compressive loading is equal to critical
value for tensile loading. Parameters J33 and H3 are equal to zero. The plate model was divided
into 20 × 20 elements and was analyzed in 50 load substeps.

Table 1. Material properties

E1 [GPa] E2 [GPa] G12 [GPa] ν12

M30/949 167 8.13 4.41 0.27
M40/948 228 7.99 4.97 0.292

Table 2. Damage and hardening parameters

J1 J2 H1 H2 γ0 c1 c2

M30/949 0.952 · 10−3 0.438 25.585 · 10−3 −21.665 · 10−3 −0.6 0.30 −0.395
M40/948 2.208 · 10−3 0.214 10.503 · 10−3 −8.130 · 10−3 −0.12 0.10 −0.395

Table 3. Critical values of damage variables

Dcr
1t Dcr

1c Dcr
2t = Dcr

2c ks

M30/949 0.105 0.111 0.5 0.944
M40/948 0.105 0.111 0.5 0.908

158
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Linear static analysis of the plate with LSS of [0, 45,−45, 90]S has shown that maximum
magnitudes of stresses in fiber direction and direction transverse to fibers as well as equivalent
(von Mises) stress occur in the outer layers in the middle of two opposite edges of the plate and
maximum magnitudes of shear stress in lamina coordinate system occur in layers 2 (2nd from
the bottom) and 7. However, the results of damage analysis have shown that critical damage
level will not be reached in the outer layers at first, but in layer 2 (2nd layer from the bottom)
and layer 7 for both materials.

For plate from material M30/949 critical damage level has been reached between 17th and
18th load substep in several locations in layer 2 and layer 7. Critical loading for plate from this
material (macrocrack will be present in the plate) is p = 0.175 MPa. For material M40/948
critical damage level has been reached between 46th and 47th load substeps in several locations
in layer 2 and layer 7. Critical loading is p = 0.465 MPa. In Figs. 5–6 evolution of stress vs.
strain in lamina (local) coordinate system in layer 7 in integration point where critical damage
level was reached at first for LSS [0, 45,−45, 90]S for both materials are shown. In Figs. 7–8
evolution of damage variables in the same point are shown.

Fig. 5. Stress vs. strain evolution in lamina coor-
dinate system in layer 7 in integration point where
critical damage level was reached at first for mate-
rial M30/949 and LSS [0, 45,−45, 90]S

Fig. 6. Stress vs. strain evolution in lamina coor-
dinate system in layer 7 in integration point where
critical damage level was reached at first for mate-
rial M40/948 and LSS [0, 45,−45, 90]S

Fig. 7. Evolution of damage variables in layer 7
in integration point where critical damage level
was reached at first for material M30/949 and LSS
[0, 45,−45, 90]S

Fig. 8. Evolution of damage variables in layer 7
in integration point where critical damage level
was reached at first for material M40/948 and LSS
[0, 45,−45, 90]S
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Linear static analysis of the plate with LSS of [0, 90, 45,−45]S has shown that maximum
magnitudes of stresses in fiber direction and direction transverse to fibers as well as shear stress
in lamina coordinate system and equivalent (von Mises) stress occur in the outer layers. Results
of damage analysis have shown that critical damage level for plate from material M30/949 will
be reached in these layers. Critical damage level has been reached between 29th and 30th load
substep. Critical loading for plate from this material is p = 0.299 MPa. For plate from material
M40/948 critical damage level has not been reached.

On the other hand linear static analysis of the plate with LSS of [45, 0,−45, 90]S has shown
that maximum magnitudes of stresses in fiber direction and direction transverse to fibers as
well as equivalent (von Mises) stress do not occur in the outer layers, but in layers 2 and 7.
Maximum magnitudes of shear stress in lamina coordinate system occur in the outer layers.
Critical damage level in plate with this LSS will be reached in the outer layers at first for both
materials. Critical damage level has been reached between 13th and 14th load substep in plate
from material M30/949 and between 34th and 35th load substep in plate from material M40/948.
Critical loadings are p = 0.137 MPa and p = 0.346 MPa.

Overall results of the damage analyses relating to the critical damage level for all LSSs
and both materials are listed in Table 4. In Figs. 9–14 distribution of value of the product
(1 − D1)(1 − D2), which is required for assessing the critical damage level, in layers 1 and 2
for plate from material M30/949 with LSS of [45, 0,−45, 90]S after applying 15, 30 and 50 load
substeps, which corresponds to loadings 0.15 MPa, 0.30 MPa and 0.50 MPa.

Table 4. Overall results of the damage analyses relating to critical damage level

LSS material

layers in which
the critical damage
level was reached

at first

layers with
critical damage

level after
applying full loading

critical loading

[0, 45,−45, 90]S
M30/949 2, 7 1, 2, 3, 6, 7, 8 0.175 MPa
M40/948 2, 7 2, 7 0.465 MPa

[0, 90, 45,−45]S
M30/949 1, 8 1, 2, 3, 6, 7, 8 0.299 MPa
M40/948 – – –

[45, 0,−45, 90]S
M30/949 1, 8 1, 2, 3, 6, 7, 8 0.137 MPa
M40/948 1, 8 1, 8 0.346 MPa

Fig. 9. Distribution of the value of
(1 − D1)(1 − D2) in layer 1, material M30/949,
LSS [45, 0,−45, 90]S after load substep 15
(p = 0.15 MPa)

Fig. 10. Distribution of the value of
(1 − D1)(1 − D2) in layer 2, material M30/949,
LSS [45, 0,−45, 90]S after load substep 15
(p = 0.15 MPa)
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Fig. 11. Distribution of the value of
(1 − D1)(1 − D2) in layer 1, material M30/949,
LSS [45, 0,−45, 90]S after load substep 30
(p = 0.30 MPa)

Fig. 12. Distribution of the value of
(1 − D1)(1 − D2) in layer 2, material M30/949,
LSS [45, 0,−45, 90]S after load substep 30
(p = 0.30 MPa)

Fig. 13. Distribution of the value of
(1 − D1)(1 − D2) in layer 1, material M30/949,
LSS [45, 0,−45, 90]S after load substep 50
(p = 0.50 MPa)

Fig. 14. Distribution of the value of
(1 − D1)(1 − D2) in layer 2, material M30/949,
LSS [45, 0,−45, 90]S after load substep 50
(p = 0.50 MPa)

5. Conclusion

In the current study, we have focused on solving elastic damage analysis of thin laminated long
fiber-reinforced composite plate consisting of unidirectional layers which is fixed on its edges
and loaded by uniformly distributed pressure for different materials and different LSSs. The
postulated damage surface reduces to the Tsai-Wu surface in stress space. However, presented
model goes far beyond simple failure criteria by identifying a damage threshold, hardening
parameters for the evolution of damage, and critical values of damage for which material failure
occurs. The analysis results show that change of material, change of laminate stacking sequence
as well as presence of shear stress have significant influence on the evolution of damage as well
as on location of critical damage and load at which critical level of damage will be reached.
Critical damage level has not necessary to be reached in places with maximum magnitude of
equivalent stress, but can be reached in other places.
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