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Abstract

The ring-core method is the semi-destructive experimental method used for evaluation of the homogeneous and
non-homogeneous residual stresses, acting over depth of drilled core. By using incremental strain method (ISM)
for the residual state of stress determination, this article describes procedure how unknown directions and mag-
nitudes of principal residual stresses can be determined. Finite element method (FEM) is used for the numerical
simulation of homogenous residual state of stress and for subsequent strain determination. Relieved strains on the
top of the model’s core are measured by simulated three-element strain gauge, turned by the axis of strain gauge
“a” from the direction of the principal stress σ1 about unknown angle α. Depth dependent magnitudes of relieved
strains, their differences and set of known values of calibration coefficients K1 and K2 or relaxation coefficients
A and B are used together for determination of the angle α and for re-calculation of principal stresses.
c© 2011 University of West Bohemia. All rights reserved.
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1. Introduction

The ring-core method (RCM) is a semi-destructive experimental method used for the evaluation
of homogeneous and non-homogeneous residual stresses, acting over depth of drilled core.
Therefore, the specimen is not totally destroyed during measurement and it could be used for
further application in many cases.

One of the applicable theories, based on the procedure of evaluating magnitude of the resid-
ual stress, is called the incremental strain method (ISM). It is still used quite often, despite its
numerous theoretical shortcomings. On the one hand, ISM assumes that the measured defor-
mations dεa, dεb and dεc are functions only of the residual stresses acting in the current depth
“z” of the drilled hole and they do not depend on the previous increments “dz” including an-
other residual stresses, see Fig. 1. On the other hand, relieved strains do not depend only on the
stress acting within the drilled layer, but also on the geometric changes of the ring groove dur-
ing deepening. Consequently, strain relaxations are still continuing and grooving with drilled
depth, even though the next step’s increment is stress free. Therefore, the proposed theory pur-
veys only approximate information about the real state of stress and RCM method is not suitable
for the types of measurements with a steep gradient of residual state of stress.

By using incremental strain method for the residual state of stress determination and FEM,
this article describes procedure how directions of the principal residual stresses can be deter-
mined. Finite element method is used for the numerical simulation of homogenous residual
state of stress and relieved strains on the top of the model’s core are measured by simulated
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Fig. 1. Principle of ISM with known directions of principal stresses (α = 0◦)

Fig. 2. Strain gauges “a, b, c” placed in principal
stress directions

Fig. 3. Strain gauges “a, b, c” placed in general
direction

three-element strain gauge rosette, turned by the axis of the strain gauge “a” from the direction
of the principal stress σ1 about unknown angle α (Fig. 3).

2. Problem description

Like the integral method, the incremental strain method requires a set of depth-dependent coeffi-
cients, which are necessary for further residual stress determination, carried out by the ring-core
method in this case. Values of calibration coefficients K1 and K2 have been already determined
by the simulation under various types of uniaxial and biaxial state of stress conditions and pub-
lished in articles [2, 3] and [1, 7]. Their dependence on the depth of drilled hole and on the
disposition of the homogenous residual state of stress as well as geometry changes of the annu-
lar groove and finite element model’s dimensions have been considered too. Another way, how
to determine residual state of stress between two specifics depths of drilled groove, is possible
by calculation of relaxation coefficients A and B.

This paper deals with results obtained by the FE-measurement of relieved strains εa, εb and
εc, by generally placed strain gauge rosette on the top of the core, where their differences and
set of known values of calibration coefficients K1 and K2 or relaxation coefficients A and B
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is used for the proper determination of the principal stresses σ1 and σ2. Placing of the three-
element strain gauge rosette on the top of the ring-core is shown in case of known direction of
principal residual stress (Fig. 2) and in case of general direction (Fig. 3).

3. Basic equations
Like each method, incremental strain method has its own theoretical background to define cer-
tain relations between known and unknown parameters. Residual state of stress can be deter-
mined either by differentials or differences of relieved strains.

3.1. Using calibration coefficients K1 and K2

Equations (2)–(4) describe strain differentials, used to express determination of the principal
stress σ1 and σ2 by the known set of calibration coefficients K1, K2, calculated from principal
strains ε1 and ε2 on the top surface of the core, where the three-element ring-core rosette is
placed ([1–3] and [5]).

Relieved general strains εa, εb and εc are measured every i-th step of drilled depth zi and
size of step’s difference Δz is always referred to the previous step’s size (zi−1). Magnitude of
each step used in FEM simulation (1) is Δz = const. = 0.2 mm

Δz = zi − zi−1 = 0.2 mm, for i = 1 ÷ 40. (1)

With known magnitude of the calibration coefficient K1, K2 (Fig. 4 and 5, Table 1) and
relevant derivation of principal strains dε1/dz and dε2/dz in dependence on the specific mag-
nitude of step’s increment dz could by principal stresses of homogenous residual state of stress
obtained by following equations:

σ1 =
E

K2
1 − μ2K2

2

·
(

K1
dε1

dz
+ μK2

dε2

dz

)
, (2)

σ2 =
E

K2
1 − μ2K2

2

·
(

K1
dε2

dz
+ μK2

dε1

dz

)
, (3)

dε1

dz
= ε′1,

dε2

dz
= ε′2, (4)

where E is Young’s modulus, μ is Poisson’s ratio and ε′1, ε′2 are numerical derivations of relieved
strains.

Attention should be paid to formulations suggested in (2), (3). If the denominator K2
1−μ2K2

2

becomes zero for certain values of K1 and K2, the stress will become infinite, i.e. for steel
material with 0.3 ∼= μ = K1/K2. Further, expressions of (2)–(4) could be modified into
equations used for determination of calibration coefficients under uniaxial and biaxial state of
stress conditions.

In case of the uniaxial state of stress, (σ1 �= 0, σ2 = 0), equations for the calibration
coefficients K1, K2 are described by:

K1 =
E

σ1
· ε′1, K2 = − E

μσ1
· ε′2. (5)

In case of the biaxial state of stress (σ1 �= 0, σ2 �= 0), equations for calibration coefficients
K1 and K2 are described by:

7



A. Civı́n et al. / Applied and Computational Mechanics 5 (2011) 5–14

K1 =
E

σ1(1 − κ2)
· (ε′1 − κ · ε′2), (6)

K2 =
E

μσ1(1 − κ2)
· (κ · ε′1 − ε′2), (7)

κ =
σ2

σ1
. (8)

Formulations suggested by (6) and (7) have a problem with the denominator too. If σ1 = σ2

or σ1 = −σ2, then (1− κ2) becomes zero and magnitude of calibration coefficient will become
infinite.

Fig. 4. Calibration coefficients determined under
uniaxial residual state of stress simulation

Fig. 5. Calibration coefficients determined under
biaxial residual state of stress simulation

Calculated points of calibration coefficients K1, K2 in dependence on the drilled depth of
the ring-groove are plotted in Figs. 4 and 5. Appropriate polynomial functions of the sixth
degree with constants reproduced by (9) are written in Table 1.

Table 1. Coefficients of polynomial functions

Polyno- Coefficients [–]
mial No.: a0 a1 a2 a3 a4 a5 a6

1 −0,010 670 4 −0,314 649 7 0,111 879 8 −0,011 659 6 −0,000 084 8 0,000 075 7 −0,000 003 0
2 −0,010 055 6 0,173 809 1 −0,205 010 2 0,057 055 6 −0,005 849 3 0,000 150 4 0,000 005 7
3 −0,010 676 9 −0,314 756 6 0,112 016 7 −0,011 715 9 −0,000 074 6 0,000 074 8 −0,000 003 0
4 −0,010 161 6 0,173 977 5 −0,204 814 0 0,056 843 4 −0,005 784 4 0,000 142 2 0,000 006 1

Entire hole was made by 40 increments of step’s size Δz = 0.2 mm. In Figs. 4 and 5 is
obvious, that behavior of K1 and K2 polynomial functions still remains the same for various
magnitudes of simulated uniaxial and biaxial states of stress [3]. Therefore, no change in the
numerical evaluation of calibration coefficients K1 and K2 is observed, because modification
of homogenous state of stress have no influence on calibration coefficients determination. For
this reason, only one universal set of calibration coefficients K1 and K2 is applicable.

Ki = a0 + a1z
1 + a2z

2 + a3z
3 + a4z

4 + a5z
5 + a6z

6. (9)

Polynomial constants in Table 1 prove the fact that the functions of calibration coefficients
K1 and K2 are the same for various types of simulated homogenous residual states of stress, i.e.
only one universal set of calibration coefficients K1 and K2 is applicable.

Dependence of the calibration coefficient K2 on type of the residual state of stress was
published by Hwang [4], but this contention was disproved.

8



A. Civı́n et al. / Applied and Computational Mechanics 5 (2011) 5–14

Fig. 6. Modified Mohr’s circle for strain Fig. 7. Mohr’s circle for stress

3.2. Determination of principal stresses with unknown principal directions

Relationship between principal strains ε′1, ε
′
2 and general strains ε′a, ε

′
b, ε

′
c measured in unknown

angle α between direction of principal stress σ1 and axis of the strain gauge’s measuring grid:

ε′a = G + H · cos 2α =
ε′1 + ε′2

2
+

ε′1 − ε′2
2

· cos 2α, (10)

ε′b = G + H · cos(2α + 90◦) =
ε′1 + ε′2

2
− ε′1 − ε′2

2
· sin 2α, (11)

ε′c = G + H · cos(2α + 180◦) =
ε′1 + ε′2

2
− ε′1 − ε′2

2
· cos 2α. (12)

According to modified Mohr’s circle in Fig. 6, relationship between principal strains ε′1, ε
′
2

and generally measured relieved strains ε′a, ε
′
b, ε

′
c is:

G =
ε′1 + ε′2

2
=

ε′a + ε′c
2

, (13)

H =
ε′1 − ε′2

2
=

1

2

√
(ε′a − ε′c)

2 + (ε′a + ε′c − ε′b)2. (14)

Angle between direction of principal residual stress σ1 and axis of strain gauge’s measuring
grid “a”:

tan 2α =
ε′b − G

G − ε′a
=

2ε′b − ε′a − ε′c
ε′c − ε′a

→ α = arctan

(
2ε′b − ε′a − ε′c

ε′c − ε′a

)
. (15)

Table 2. Specified quadrants

Numerator: Denominator:
2ε′b − ε′a − ε′c ε′c − ε′a 2α [◦]

+ + 0 ÷ 90
+ − 90 ÷ 180
− − 180 ÷ 270
− + 270 ÷ 360
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Similarly, derivation of strains ε′1, ε′2 and ε′a, ε′b, ε′c could be used in (10)–(15) instead of ε1,
ε2 and εa, εb, εc strains in order to evaluate stress σa, σb and σc in direction of strain gauge’s
axis:

σa =
E

K2
1 − μ2K2

2

· (K1ε
′
a + μK2ε

′
c), (16)

σb =
E

K2
1 − μ2K2

2

· [K1ε
′
b + μK2(ε

′
a − ε′b + ε′c)], (17)

σc =
E

K2
1 − μ2K2

2

· (K1ε
′
c + μK2ε

′
a). (18)

According to Mohr’s circle in Fig. 7, principal stress σ1 and σ2 could be recalculated by
using known magnitudes of non-principal stresses σa, σb, σc measured by generally turned
strain gauge rosette:

M =
σa + σc

2
, N =

1

2

√
(σa − σc)2 + (σa + σc − 2σb)2, (19)

σ1 = M + N, σ2 = M − N. (20)

3.3. Using relaxation coefficients A and B

Magnitude of principal residual stresses, acting within two drilled depths, can be determined by
using relaxation coefficients too. Therefore, relieved strains are measured only at two different
depths and step’s difference Δz consist of two particular depths zi and 2zi, described by

Δz = 2zi − zi = zi, for zi = 1, 2, 3, 4 [mm]. (21)

Assuming that dεi

dz
≈ Δεi

Δz
, equations of principal strains (2) and (3) can be rewritten:

σ1 =
E

K2
1 − μ2K2

2

· 1

Δz
· (K1Δε1 + μK2Δε2), (22)

σ2 =
E

K2
1 − μ2K2

2

· 1

Δz
· (K1Δε2 + μK2Δε1), (23)

Δε1 = (ε1)2zi
− (ε1)zi

, Δε2 = (ε2)2zi
− (ε2)zi

. (24)

Confrontation of the calibration coefficients K1, K2 and relaxation coefficients A, B:

A =
E · K1

K2
1 − μ2K2

2

· 1

Δz
, B =

E · K2

K2
1 − μ2K2

2

· 1

Δz
. (25)

If ε1 = σ1

E
and Δε∗1 = Δε1

ε1
; Δε∗2 = Δε2

μ·ε1
then relaxation coefficients A, B are determined:

A =
E

Δε∗1
Δz

1
(Δz)2

[(Δε∗1)
2 − (μΔε∗2)

2] · Δz
=

E · Δε∗1
(Δε∗1)

2 − (μΔε∗2)
2
, (26)

B = −
E · μ · Δε∗2

Δz
1

(Δz)2
[(Δε∗1)

2 − (μΔε∗2)
2] · Δz

= − E · μ · Δε∗2
(Δε∗1)

2 − (μΔε∗2)
2
. (27)

Finally, equations for residual stress determination, which are based on differences of re-
lieved strains and relaxation coefficients A, B are:

σ1 = A · Δε1 − B · Δε2, σ2 = A · Δε2 − B · Δε1. (28)
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4. FEM simulation
A prerequisite for correct and accurate measurement of relieved strains on the top of the core is
to use FEM simulation. It is the only reasonable way to obtain desired information or simulate
real experiment. The ANSYS analysis system is used for the FE-simulation.

FE-analysis is based on a specimen volume with dimensions of a × a = 50 × 50 mm and
thickness of t = 50 mm. Due to symmetry, only a quarter of the model has been modeled with
centre of the core on the surface as the origin. The shape of the model is simply represented
by a block with planar faces, with a quarter of the annular groove drilled away (Figs. 8 and 9).
The annular groove has been made by n = 40 increments with the step size of Δz = 0.2 mm in
case of approach described by using calibration coefficients K1 and K2. The maximum depth
of drilled groove is z = 8 mm. Dimension of outer diameter is D = 2ri = 18 mm and groove
width is h = 2 mm.

Fig. 8. Quarter of global solid model Fig. 9. Finite element model

Linear, elastic and isotropic material model is used with material properties of Young’s
modulus E = 210 GPa and Poisson’s ratio μ ∼= 0.3. Relaxed strains ε1, ε2 and ε3 have been
measured at real positions of strain gauge rosettes’ measuring grids by integration across its
surface. Type of considered strain gauge rosette is FR-5-11-3LT, with length and width of each
measuring grid 5 mm and 1.9 mm, respectively [6].

Fig. 10. Depth of drilled groove for z = 2 mm Fig. 11. Depth of drilled groove for z = 4 mm
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5. Results
5.1. Using calibration coefficients K1 and K2

Released strains on the top of the core are obtained by the FE-analysis (Fig. 12). Application
of the general-purposed finite element model in order to simulate homogenous uniaxial state of
stress with magnitude of principal stress σ1 = 60 MPa, σ2 = 0 MPa has been used to verify
basic equations (10)–(20) and theoretical approach proposed by ISM.

Fig. 12. Plot of total displacement [mm] — uniaxial state of stress, depth of drilled groove z = 2 mm

Graphs of relaxed strains calculated by integration across strain gauge’s measuring grid [3]
are plotted in Fig. 13 and their numerical derivations are plotted in Fig. 14. Axis of strain
gauge’s measuring gird “a” was for this simulation turned from the direction of principal stress
σ1 about angle α = 30◦.

Non-principal residual stresses σa, σb, σc acting in axis direction of turned strain gauge
rosette’s measuring grids “a, b, c”, are calculated by (16)–(18) and plotted in Fig. 15 in depen-
dence on the depth of drilled hole. The set of calibration coefficients K1 and K2 (Figs. 4 and 5),
determined under uniaxial or biaxial state of stress conditions, needs to be used for this reason.

Fig. 16 shows angle α between direction of principal residual stress σ1 and axis of strain
gauge’s measuring grid “a” determined in each drilled depth by (15). Table 2 gives an ad-
vice how to consider signs of numerator and denominator of (15) in order to determine correct
quadrant of strain gauge grid’s position.

Fig. 13. Measured strains on the top of the core Fig. 14. Derivations of relieved strains
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Fig. 15. Measured stress in general direction of
strain gauges measuring grid’s axis

Fig. 16. Determined angle α

Fig. 17. Re-calculated principal stresses Fig. 18. Ratio of calibration coefficients

Re-calculated magnitudes of principal residual stresses σ1, σ2 by (19)–(20) are plotted in
Fig. 17 and their magnitudes correctly correspond with simulated homogenous state of stress
with principal stresses σ1 = 60 MPa, σ2 = 0 MPa.

Shortcoming of ISM is obvious in Figs. 15, 17 and 18 where values of results are missing
in depth of drilled hole z = 6 mm. This problem is caused by denominator K2

1 − μ2K2
2 in all

equations where it appears. Only one case is possible when denominator K2
1 − μ2K2

2 becomes
zero for certain values of K1 and K2, and this condition is met in case of Poisson’s ration
K1/K2 = μ ∼= 0.3 (steel material) exactly in depth of z = 6 mm (Fig. 18). For this reason,
magnitude of stress is non-numerable in this depth.

5.2. Using relaxation coefficients A and B

Magnitudes of residual stresses, acting between two specific depths zi and 2zi (Figs. 10 and 11)
of drilled groove can be determined by the method using differences Δε/Δz too (21). Values
of general strains, used for determination of relaxation coefficients A, B by simulation of ho-
mogenous uniaxial stress state (σ1 = 60 MPa, σ2 = 0 MPa), are measured across strain gauge’s
measuring grid.

Unknown angle α can be determined for set of strains εa, εb and εc in each depth zi by (15).
Principal strains ε1 and ε2 can be re-calculated by (10)–(12). After that, calibration coefficients
A and B can be determined by (26) and (27), using normalized strains Δε∗1, Δε∗2 of differentials
Δε1, Δε2 (24). All necessary constants are written in Table 3 for specific variations of drilled
depths.

Incontestable advantage of residual stress determination by relaxation functions A and B
is independency on determination of depth-dependent calibration coefficients like K1 and K2,
which are possible to obtain, either by FEM simulation or experimental measurement.
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Table 3. Residual stress determination by relaxation constants

zi [mm] Δε1 [1] Δε2 [1] Δε∗1 [1] Δε∗2 [1] A [MPa] B [MPa] σ [MPa] α [◦]
1

3.671E–06 –7.599E–05 1.285E–02 –8.866E–01 –3.823E+05 –7.914E+05 60.00 302
2

3.617E–05 3.753E–04 1.266E–01 4.375E–00 –1.558E+04 1.615E+05 60.00 304
3

5.940E–05 –1.248E–04 2.079E–01 –1.456E–00 –2.958E+05 –6.216E+05 60.00 306
4

5.791E–05 –7.200E–05 2.027E–01 –8.400E–01 –1.898E+06 –2.360E+06 60.00 308

6. Conclusions
This paper provided basic information about semi-destructive ring-core method. By using in-
cremental strain method for residual state of stress determination by the finite element method,
this article gives additional information about homogenous residual stress measurement. By
using slightly turned strain gauge rosettes’ measuring grids from the directions of acting prin-
cipal stresses about general angle α, magnitudes and directions of principal stresses need to be
re-calculated.

Theoretical background described by basic differential or difference equations and applica-
tion of universal set of the depth-dependent calibration coefficients K1, K2 or relaxation func-
tions A, B in order to determine principal residual stresses and their orientation, has been pre-
sented.

One of the shortcomings of the ISM, such as impossibility of stress measurement in spec-
ified depth in dependence on the Poisson’s ratio, has been clarified. Another shortcoming of
this method is inaccurate non-homogenous stress evaluation and measuring of more than full
released strains in depth greater than z = 5 mm [2, 3]. Where the steep gradients of residual
state of stress are occurred, measurement is not suitable in this case too.

Incremental strain method had been used frequently until the integral method has overcome
its shortcomings. By concentrating the research on the observed weaknesses and the ambiguous
details the ring-core method can be made an accurate and reliable method for residual stress
measurement.
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Ring Core Method. In ICEM 14 — 14th International Conference on Experimental Mechanics,
France, 2010.

14


