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Abstract

In this article we are going first to aim at the variational formulation of the bending problem for the Timoshenko
beam model. Afterwards we will extend this problem to the Timoshenko beam resting on the Winkler foundation,
which is firmly connected with the beam. Hereafter a shape optimization for the aforementioned problems is
presented. The state problem is here represented by the system of two ordinary differential equations of the second
order. The optimization problem is given as a minimization of the so-called compliance functional on the set of
all admissible design variables. For our purpose as the design variable we will select the beam thickness. Shape
optimization problems have attracted the interest of many applied mathematicians and engineers. The objective of
this article is to present a solution method for one of these problems and its demonstration by examples.
c© 2010 University of West Bohemia. All rights reserved.
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1. Introduction

Nowadays it is well known that the classical Euler-Bernoulli beam theory is valid only for long
span, equivalently thin, beams. In 1921 S. P. Timoshenko proposed a new beam theory that
has been used for short, equivalently thick, beams. Unlike the Euler-Bernoulli hypothesis, the
Timoshenko beam theory supposes that the plane section originally normal to the beam middle
axis remains plane but not necessarily normal to the deformed axis, as in addition also transverse
shear deformations can occur. Thus, using this theory it is possible to analyze thicker beams
more accurately than by the classical beam theory.

A variational formulation of the bending problem and a finite element model will be in-
terested us in the first part of this work. But foremost we want to present here some shape
optimization of the Timoshenko beam with regard to the beam thickness. The criterion will be
done by the compliance functional. Afterwards we are going to deal with the beam resting on a
Winkler foundation. For this case it is possible to consider beside the beam thickness also the
foundation stiffness optimization, but this opportunity will not be demonstrated in this article.

Several works have been done on this field but none of them is concerning the Timoshenko
beam. The thickness optimization for the Euler–Bernoulli beam model was mostly examined, as
it is from the theoretical and computational point of view a sort of fundamental and interesting
case. Optimization of a beam with a subsoil of Winkler’s type was studied in [7]. Object of
optimization was the thickness and the subsoil stiffness. Especially it was focused on numerical
modeling of the problem using ANSYS software system. Thickness optimization of a beam
with a rigid obstacle was treated in [11], where an approach based on sensitivity analysis and
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nonlinear optimization methods was used. Optimal design of a beam on an unilateral elastic
subsoil was presented in [12]. Existence of at least one solution was proved and conditions
ensuring the solvability of the state problem were formulated.

2. Timoshenko beam with Winkler foundation

Let us consider a beam of the length L. The displacement field is

ux(x, y) = u(x) − yθ(x), uy(x, y) = w(x), uz(x, y) = 0, (1)

where θ denotes the rotation of the cross-section plane about a normal to the middle axis x, u is
the axial displacement of this axis and w is its transverse displacement. Little analyzing gives
us

θ(x) = w
′
(x) − γ(x), γ(x) =

Q(x)

κGA
. (2)

Here Q is the transverse shear force, γ is the angle of shearing, G is the shear modulus, A
is the cross-section area and κ is the shear correction factor. This factor is dependent on the
cross-section and on the type of problem; one frequently used formula is κ = 10(1+ν)

12+11ν
(ν is the

Poisson’s ratio) or sometimes κ = 5
6

(see e.g. [3]).
Substituting (1) into the Green-St Venant strain tensor we obtain after some rearrangements

(for the details see e.g. [3] or [6]) the system of two equations with the unknowns w and θ

(EIθ
′
)
′
+ κGA(w

′ − θ) + m = 0, (3)
(κGA(w

′ − θ))
′
+ q = 0, (4)

with E denoting the elasticity modulus, I the moment of inertia, q(x) the applied transverse
load and m(x) the applied moment. The values of E and G are assumed constant, whereas I
and A will be functions of the beam cross-section proportions b and t. Here b denotes the beam
width and its height is considered in the interval [−t, t]. As we want later to optimize the beam
thickness, t will be a function of x and for simplicity referred as the thickness although it is
actually only a “half-thickness”. For definiteness we will study the beam with a rectangular
cross-section, hence we have

I(x) =
2

3
bt3(x), A(x) = 2bt(x). (5)

Now we will deal with the variational formulation of the Timoshenko beam bending prob-
lem. First we must define suitable spaces for our unknowns. Let V be the space of kinematically
admissible deflections v such that

H1
0((0, L)) ⊆ V ⊆ H1((0, L)). (6)

Let us remember that the Sobolev space H1((0, L)) consists of those functions v ∈ L2((0, L))
for which derivatives v

′ (in the distribution sense) belong to the space L2((0, L)). The Lebesgue
space L2((0, L)) is defined as the space of all measurable functions on (0, L), the squares of
which have a finite Lebesgue integral. Finally we define in (6) the space H1

0 ((0, L)) by

H1
0 ((0, L)) = {v ∈ H1((0, L)) : v(0) = v(L) = 0}. (7)
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More information in relation to Sobolev spaces can be found e.g. in [1]. The same we can make
also for kinematically admissible rotations η. The respective spaces will be distinguished as V1

and V2.
It is well known that the finite element method distinguishes between natural and essential

boundary conditions. The first ones are contained in the space V , the second ones are built
into the variational formulation. Let us remark, that the beam fixed at the both ends requires
working with the spaces (7). Since the concrete boundary conditions are not important for our
next explanation, without a loss of generality we can simply assume that the beam is fixed at
both ends, so that we will work with the spaces V1 = V2 = H1

0 ((0, L)).
Using test functions from the above defined spaces we can obtain from the system (3)–(4)

after integration by parts

L∫
0

EIθ
′
η

′
dx −

L∫
0

κGA(w
′ − θ)η dx =

L∫
0

mη dx ∀η ∈ V2, (8)

L∫
0

κGA(w
′ − θ)v

′
dx =

L∫
0

qv dx ∀v ∈ V1. (9)

Summing these equations together leads to

L∫
0

EIθ
′
η

′
dx +

L∫
0

κGA(w
′ − θ)(v

′ − η) dx =

L∫
0

mη dx +

L∫
0

qv dx ∀v ∈ V1, η ∈ V2 (10)

and this can be interpreted as the equation for a stationary point of the potential energy of the
Timoshenko beam and it is possible to write it as follows

J
′
TB(w, θ; v, η) = 0 ∀v ∈ V1, η ∈ V2. (11)

J
′
TB(w, θ; v, η) denotes the Gâteaux derivative of JTB at the point {w, θ} in the directions v, η

(see e.g. [1]). Equations (11) and (10) imply that the functional of potential energy has the form

JTB(w, θ) =
1

2

L∫
0

EI (θ
′
)2 dx +

1

2

L∫
0

κGA (w
′ − θ)2dx −

L∫
0

mθ dx −
L∫

0

qw dx. (12)

It is easy to prove that this functional is strictly convex. Then the equation (11) can be conse-
quently rewritten as

JTB(w, θ) = min
v∈V1, η∈V2

JTB(v, η). (13)

The problem of finding a pair {w, θ} ∈ V1 ×V2 such that (13) holds we will call the variational
formulation of the Timoshenko beam bending. The convexity implies the unique solution of
the minimization problem (13) and also the fact that (13) can be equivalently represented by the
pair of equations (8)–(9).

Now let us go forward to the problem with a Winkler foundation. If kF is the foundation
stiffness, then its potential energy reads as

JWF (w) =
1

2

L∫
0

kFw2 dx. (14)
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From here we immediately obtain the functional of total energy for the system beam plus foun-
dation

J(w, θ) = JTB(w, θ) + JWF (w). (15)

The variational formulation of this problem is as follows:{
Find functions {w, θ} ∈ V1 × V2 such that
J(w, θ) = min

v∈V1, η∈V2

J(v, η). (16)

The functional (15) obviously retains the strict convexity, hence (16) can be equivalently rewrit-
ten as

J
′
(w, θ; v, η) = 0 ∀v ∈ V1, η ∈ V2. (17)

It gives us

L∫
0

EIθ
′
η

′
dx −

L∫
0

κGA(w
′ − θ)η dx =

L∫
0

mη dx ∀η ∈ V2, (18)

L∫
0

κGA(w
′ − θ)v

′
dx +

L∫
0

kFwv dx =

L∫
0

qv dx ∀v ∈ V1 (19)

and from here we can deduce the following system of two equations

(EIθ
′
)
′
+ κGA(w

′ − θ) + m = 0, (20)
(κGA(w

′ − θ))
′
+ kFw + q = 0 (21)

presenting the extension of the original system (3)–(4) by the foundation term.

3. Finite element model for the Timoshenko beam

Now we proceed to a finite element discretization of our problems. As the problem without the
foundation (3)–(4) can be obtained from (20)–(21) by putting kF = 0, we will refer to the last
one. For this purpose we have to define some division of the interval [0, L] into subintervals
Ki = [xi−1, xi], where we have generated nodes 0 = x0 < x1 < . . . < xn = L. Without loss
of generality, we will restrict ourself to an equidistant division, i.e. xi − xi−1 = h for all i.
Formally, the discrete problem reads as follows:{

Find {wh, θh} ∈ V1,h × V2,h such that
J(wh, θh) = min

vh∈V1,h, ηh∈V2,h

J(vh, ηh) , (22)

which is equivalent to

L∫
0

EIθ
′
hη

′
hdx −

L∫
0

κGA(w
′
h − θh)ηhdx =

L∫
0

mηhdx ∀ηh ∈ V2,h, (23)

L∫
0

κGA(w
′
h − θh)v

′
hdx +

L∫
0

kF whvhdx =

L∫
0

qvhdx ∀vh ∈ V1,h. (24)
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Vk,h is a finite-dimensional subspace of the given space Vk, k = 1, 2. Because, in contrast to
the Euler-Bernoulli beam, we need not C1-continuity, it is quite natural to choose the simplest
approximation method, i.e.

Vk,h = {vh ∈ Vk : vh |Ki
∈ P1(Ki) ∀i = 1, . . . , n} k = 1, 2, (25)

where P1(Ki) denotes the set of linear polynomials defined on Ki and hence Vk,h contains
continuous piecewise linear functions.

Now we can continue as it is usual for the standard finite element method. We define the
Lagrange basis functions for our space (25) and afterwards the shape functions on a single
element, which are beneficial from the practical computation point of view. Finally we obtain a
system of linear equations (see e.g. [2] or [9]).

Unfortunately, there is a serious difficulty in this procedure — the phenomenon called the
shear locking (see e.g. [10]). A brief explanation is as follows. Let us consider (2) after the
finite element discretization. It results in

γh = w
′
h − θh. (26)

We expect that γh converges to zero as the thickness t → 0 (so-called Euler-Bernoulli limit).
But according to (25) on the right side of (26) we have the difference of a constant and a linear
function on every element and it will never give zero. Hence the shear strains, which are equal
to γh, cannot be arbitrary small and in practice the computed deflections can be much smaller
than the exact solution.

There are several possibilities how to handle this problem. We have chosen the way that is
mathematically completely correct. Therefore we define a new approximation for the unknown
w so that w

′
h will have the same polynomial degree as θh. For this purpose we put

V1,h = {vh ∈ V1 : vh |Ki
∈ P2(Ki) ∀i = 1, . . . , n} (27)

and P2(Ki) denotes the set of quadratic polynomials defined on Ki. Of course, we must add an
extra node in the middle of each interval Ki. The space V2,h remains the same as in (25).

Now we are able to evaluate the element matrix for an element of the length h. Let xi = 0,
xi+1/2 = h

2
, xi+1 = h and let us denote

wi = wh(xi), wi+1/2 = wh(xi+1/2), wi+1 = wh(xi+1), (28)
θi = θh(xi), θi+1 = θh(xi+1). (29)

Then we have for x ∈ [0, h]

wh(x) =
1

h2
[(2x2 − 3hx + h2)wi + (2x2 − hx)wi+1 + (−4x2 + 4hx)wi+1/2], (30)

θh(x) =
1

h
[(−x + h)θi + xθi+1]. (31)

Substituting these relations into (23)–(24) gets after some integrations the beam element matrix⎛
⎜⎜⎜⎜⎝

7κGA
3h

5κGA
6

κGA
3h

κGA
6

−8κGA
3h

5κGA
6

EI
h

+ κGAh
3

−κGA
6

−EI
h

+ κGAh
6

−2κGA
3

κGA
3h

−κGA
6

7κGA
3h

−5κGA
6

−8κGA
3h

κGA
6

−EI
h

+ κGAh
6

−5κGA
6

EI
h

+ κGAh
3

2κGA
3

−8κGA
3h

−2κGA
3

−8κGA
3h

2κGA
3

16κGA
3h

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

wi

θi

wi+1

θi+1

wi+1/2

⎞
⎟⎟⎟⎟⎠ . (32)
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As we have internal nodes in every element, we can use the static condensation technique (see
e.g. [2]) to eliminate the unknowns associated with these nodes. After that we obtain⎛

⎜⎜⎝
κGA

h
κGA

2
−κGA

h
κGA

2
κGA

2
EI
h

+ κGAh
4

−κGA
2

−EI
h

+ κGAh
4

−κGA
h

−κGA
2

κGA
h

−κGA
2

κGA
2

−EI
h

+ κGAh
4

−κGA
2

EI
h

+ κGAh
4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

wi

θi

wi+1

θi+1

⎞
⎟⎟⎠ . (33)

The same can be done also for the foundation element matrix. For example [13] contains more
relevant details.

4. Optimization

In this section we shall formulate a shape optimization problem for the Timoshenko beam model
presented in the previous sections. We will optimize the thickness of the beam with respect to a
compliance cost functional. Let us note, that here can be used also the name sizing optimization,
as only typical size of a structure is optimized.

Let the thickness t be a function depending on x and occurring in the Timoshenko beam
model as a part of the cross-section area A and its inertia moment I as it is in (5). To define an
optimization problem we have to specify the class Uad of admissible thicknesses

Uad =

{
t ∈ C0,1([0, L]) : 0 < T0 ≤ t(x) ≤ T1 x ∈ [0, L],

L∫
0

t(x) dx = T2, |t′(x)| ≤ T3 ∀x ∈ [0, L]

}
, (34)

where the positive constants T0, T1, T2 and T3 are chosen in such a way that Uad is nonempty.
The set Uad consists of all Lipschitz continuous functions that are uniformly bounded together
with the absolute value of their first derivatives in [0, L]. Moreover the volume of the beam is
preserved and fixed during the optimization.

For an arbitrary but fixed t ∈ Uad the state problem is defined by (8), (9) and (18), (19),
respectively. It can be proved that there is a continuous dependence between the design variable
t and the state problem solution {w, θ}. Further let us define the compliance cost functional

J (t, w, θ) =

L∫
0

q(x) w(x) dx. (35)

Functional J corresponds to the compliance of the transversally loaded beam. The compliance
cost functional is not explicitly dependent on the design variable t, but generally the cost func-
tional is a mapping J : Uad × V1 × V2 → R, see e.g. [4, 8]. Now we are ready to formulate
the shape optimization problem:{

Find t∗ ∈ Uad such that
J (t∗, w∗, θ∗) ≤ J (t, w, θ) ∀t ∈ Uad,

(36)

where {w, θ} = {w(t), θ(t)} is a solution of the state problem for corresponding t ∈ Uad.
It can be proved that the optimization problem has at least one solution. We can describe the
optimization problem by the following scheme:

t 	−→ {w, θ} 	−→ J (t, w, θ). (37)
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Optimization problem in this form is not suitable for a numerical realization. Now we pro-
ceed to a discretization of our problem. The problem will be transformed to a new one defined
by finite number of parameters. We start with the discretization of Uad. Instead of general
thickness t(x) we will consider only those functions from Uad that are Lipschitz continuous and
piecewise linear on the partition 0 = x0 < x1 < . . . < xn = L, i.e., we define

Uh
ad =

{
th ∈ C0,1([0, L]) : th |Ki

∈ P1 (Ki), ∀i = 1, . . . , n
}
∩ Uad. (38)

There is also an option to consider a stepped beam. It means to use piecewise constant thickness
distribution instead of piecewise linear, see e.g. [4]. We can associate the design variable th ∈
Uh

ad with an (n + 1)-dimensional vector. Components of this vector are nodal values of th;
i.e., ti = th(xi), i = 0, . . . , n. Then it is easy to see that Uh

ad can be identified with the finite
dimensional set

Uh =

{
t = (t0, t1, . . . , tn) ∈ R

n+1 : T0 ≤ ti ≤ T1, i = 0, . . . , n,

n∑
i=1

h

2
(ti−1 + ti) = T2, |ti−1 − ti| ≤ h T3, i = 1, . . . , n

}
. (39)

Using the finite element approach presented in the previous section the state problem trans-
forms into a system of linear algebraic equations

K(t) w(t) = F , (40)

where K = Kb + Ks. Stiffness matrices Kb, Ks ∈ R
(2n+2)×(2n+2) correspond to the beam

and its foundation, respectively. These matrices are assembled from the element matrices (33).
The vector w ∈ R

2n+2 consists of two parts. Coefficients wi and θi, i = 0, . . . , n, correspond
to the transversal displacement and rotation of the cross section, respectively. These values are
arranged as follows

w = (w0, θ0, w1, θ1, . . . , wn, θn) ∈ R
2n+2. (41)

Finally we can approach to a discretization of the cost functional. We use the trapezoid
formula for numerical integration:

Jh(t, w) =
n∑

i=1

h

2
(wi−1 q(xi−1) + wi q(xi)) = wT B q, (42)

where
B = h diag (1/2, 0, 1, 0, 1, 0, . . . , 1, 0, 1/2, 0) ∈ R

(2n+2)×(2n+2),

q = (q(x0), 0, q(x1), 0, . . . , q(xn), 0) ∈ R
2n+2.

Therefore the discrete optimization problem leads to the following nonlinear programming
problem: {

Find t∗ ∈ Uh such that
Jh(t

∗, w∗) ≤ Jh(t, w) ∀t ∈ Uh,
(43)

where w = w(t) is a solution of the linear system (40) for corresponding t ∈ Uh. It can be
proved that if we let h → 0+ then solutions (th, {wh, θh}) of the approximate optimization
problem will converge to the solution of the original problem (36).
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The evaluation of the cost functional involves a solving of the linear state problem. Con-
sequently, the optimization algorithm should use as few function evaluations as possible. Thus
some gradient information is needed. In what follows we shall evaluate the gradient of Jh with
respect to t. By using the classical chain rule of differentiation we can compute the derivative
of the cost functional at point t ∈ Uh and in direction s ∈ R

n+1:

J ′
h(t; s) = ∇T

w Jh(t, w) w′(t; s). (44)

By differentiating (40) we obtain

K(t) w
′
(t; s) = −K

′
(t; s) w(t). (45)

To get full information on the gradient ∇t Jh, we need to compute the directional derivative
(44) in n + 1 linearly independent directions. We use the adjoint state technique to overcome
this difficulty. Let us define the adjoint state problem

K(t) p(t) = ∇w Jh(t, w) = B q. (46)

Then multiplying (46) by w
′
(t; s) we have

−pT (t) K
′
(t; s) w(t) = pT (t) K(t) w

′
(t; s) = ∇T

w Jh(t, w) w
′
(t; s), (47)

where we used (45). Making use of (44) and (47) we obtain the final form of the directional
derivative:

J ′
h(t; s) = ∇T

w Jh(t, w) w
′
(t; s) = −pT (t) K

′
(t; s) w(t). (48)

For more detailed treatment of the sensitivity analysis approach we refer to [4, 5].

5. Computational examples

In the first example we consider the beam of length L = 10. The load function q is piecewise
constant and given by

q(x) =

{
100 x, < 5,
1 000 x ≥ 5.

(49)

The parameters related to the material properties and the cross sectional area of the beam are
defined as follows: b = 0.2, E = 2.19 e6, G = E/[2(1 + ν)], ν = 0.3. The beam is not
supported by a foundation, thus kF = 0. Let the set Uh be defined by the following parameters:
T0 = 0.5, T1 = 1, T2 = 7.5, T3 = 0.2 and let the initial guess be t0i = 0.75 for i = 0, . . . , n. We
used 32 finite elements in discretization; i.e., n = 32 and h = 10/32. The following boundary
conditions are prescribed: w(0) = 0, θ(0) = 0 and w(L) = 0. The beam is clamped at the left
end and simply supported at the right end. No moments are applied.

The nonlinear mathematical programming problem (43) has been solved by the sequential
quadratic programming method implemented in Matlab function fmincon. The state problems
were solved by the Cholesky method.

In fig. 1 the optimal thickness of the beam is shown. We can compare the optimal shapes
when both the Timoshenko model and the Euler-Bernoulli model for the state problem were
used. We can also compare the deflection of the beam for both models. The results are shown
in fig. 2. The cost functional values are summarized in tab. 1.
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Fig. 1. An optimal thickness with respect to the compliance cost functional

Fig. 2. A deflection of the optimal beam

Table 1. Cost functional values and number of iterations

Model Initial Final Iter
Euler-Bernoulli 109.993 961 88 78.278 316 31 11
Timoshenko 125.507 121 96 96.189 756 66 16

The following abbreviations are used: Model = mathematical model used for the state prob-
lem, Initial = initial value of the cost functional, Final = final value of the cost functional,
Iter = number of iterations.

In the second example we consider a beam of length L = 10 that is supported by a founda-
tion with the piecewise constant stiffness coefficient given by:
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Fig. 3. A beam minimizing the compliance

Fig. 4. A deflection of the beam with optimal thickness

kF (x) =

{
1 000 x < 50

16
,

100 x ≥ 50
16

.

Let the beam be loaded by a piecewise constant load q(x) given by (49). The parameters in the
definition of Uh and the parameters related to the material and the cross section of the beam are
the same as in the first example. We used 32 finite elements in discretization; i.e., n = 32 and
h = 10/32. Boundary conditions defining a simply supported beam are prescribed as w(0) = 0
and w(L) = 0. No moments are applied.

Optimal shapes and beam deflections reached for the second example are presented in fig. 3
and fig. 4. Decrease of the cost functional for both models is shown in tab. 2. From both
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Table 2. Cost functional values and number of iterations

Model Initial Final Iter
Euler-Bernoulli 209.187 411 08 150.600 022 27 18
Timoshenko 222.556 647 52 166.877 166 35 21

examples it follows that the Timoshenko model is more sensitive to changes of parameter T3. In
practice the constraint |t′(x)| ≤ T3 prevents thickness oscillation. If we drop this constraint or
set T3 > 1, the shape can oscillate wildly. For the Timoshenko model this phenomena starting
to be apparent for T3 > 0.2. Further, it can be seen that the optimal solutions for both models
produce a significant decrease of the compliance in comparison with a reference design.

6. Conclusion

We presented the shape optimization problem of the transversally loaded elastic beam with a
foundation of Winkler’s type. The Timoshenko beam theory was used for modeling of the
state problem. The variational formulation and the finite element approximation of the beam
bending problem were demonstrated. The objective of the optimization was the thickness of
the beam. The optimization problem was formulated as a minimization of the compliance cost
functional over a set of admissible thicknesses. Several numerical experiments were done,
where optimal shapes for a beam with and without foundation were shown and compared with
results attained for the Euler-Bernoulli beam model. An apparent decrease of the compliance
for optimal thickness in comparison to the reference design has been obtained in all examples.
From these results it follows that the Timoshenko model is more sensitive to changes of the
parameter T3 defining the bounds of the thickness first derivative.
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of Palacký University in Olomouc.

References

[1] Atkinson, K., Han, W., Elementary numerical analysis: A functional analysis framework,
Springer, New York, 2001.

[2] Bathe, K.-J., Finite element procedures, Prentice-Hall, New York, 1996.

[3] Dym, C. L., Shames, I. H., Energy and finite element methods in structural mechanics, Taylor &
Francis, New York, 1991.
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