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Abstract

In this paper polymeric particulate composites are studied. Especially on polypropylene (PP) matrix and mineral
fillers was focused. Polymeric particulate composites are frequently used in many engineering applications. The
composite was modeled as a three-phase continuum — matrix, interphase and particle. The properties of the
particles and interphase (size, shape, material properties) have a significant effect on the global behaviour of
the composite. On the basis of fracture mechanics methodology the interaction of micro-crack propagation in
the matrix filled by rigid particles covered by the interphase was analyzed. Effect of the loading direction on
mechanical properties of polymeric particulate composites is studied here.
c© 2008 University of West Bohemia in Pilsen. All rights reserved.
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1. Introduction

Polymeric particulate composites with the polypropylene (PP) matrix and mineral fillers are
of great practical importance due to the possibility of modifying mechanical properties and
reducing the price/volume ratio of resulting material [1, 2]. Polymeric particulate composites
are frequently used in many engineering applications. The properties of the particles themselves
(size, shape, material properties) can have a significant effect on the global behaviour of the
composite. Mainly, the addition of rigid particles to a polymer matrix will have an embrittling
effect on the composite. The presence of the interphase between particle and matrix can change
final mechanical properties of the composite.

The thickness of the interphase is usually determined indirectly from a composite property,
but results depend very much on the method of determination. This fact is demonstrated in
paper [1]. The presented interphase thickness of PP-CaCO3 system using various methods
based on global material properties of composite (modulus, yield stress, tensile strength) varies
from 0.012 μm to 0.16 μm. In the paper [3] the interphase thickness is correlated with the
work on adhesion and for the uncoated particles is estimated as 0.117 μm. The thickness of the
interphases studied depends only on the matrix and particle chemical composition and seems to
be independent of the size of the particle.

The main goal of the present paper is to estimate the influence of load direction on micro-
crack propagation in the particulate composite. In the contribution the particle-filled polymer
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composite is modelled as three-phase continuum represented by infinite matrix with homoge-
neously dispersed identical coated stiff spherical particles. The studied composite corresponds
to calcium carbonate (CaCO3) filled polypropylene.

2. Determination of crack propagation direction

A propagation of a micro-crack in the matrix of particulate composite is controlled by its inter-
action with particles. To describe the interaction the further micro-crack propagation direction
has to be known. Generally a crack propagates in direction leading to zero values of KII . For
determination of crack propagation direction numbers of criterions exist in the literature. In this
paper maximum tangential stress (MTS) criterion [4] has been used. Determination of crack
propagation direction Ωs can then be expressed by the following equation:

Ωs = arccos
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, (1)

where KI and KII are corresponding values of the stress intensity factors for normal and shear
mode of loading.

3. Numerical model

Generally, it is presented configuration in fig. 1. It was found, that crack propagation is influ-
enced significantly mainly by the nearest particles see [5, 6]. In this case, they are four particles
around the crack. In the next, it is used configuration only with four particles ambient the crack.

Fig. 1. Homogenous and regular distribution of
the particles inside polymer matrix with micro-
crack location

Fig. 2. The geometry of the 2D model used for
estimation of micro crack behaviour in the studied
particulate composite

To estimate the crack propagation direction the values of stress intensity factors for mode I
and II have to be numerically calculated. To this aim the stress strain distribution of the three-
phase composite with homogeneously distributed coated particles was numerically simulated
on a microscopic scale using the finite element program ANSYS. A simplified 2D model has
been used in the present contribution. The geometry of the model is shown in fig. 2.

Tensile load was applied via a prescribed stress in different angles. The finite element model
boundary conditions are shown in fig. 3. For calculations plane stress conditions were assumed.
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Fig. 3. Configurations expressed different loading directions

Two dimensional isoparametric elements (PLANE82) were non-homogenously distributed, be-
cause of the material inhomogenity and high stress concentration in the crack tip. The typical
finite element model has about 40 000 elements, see fig. 3.

The material properties characterizing the composite corresponding to calcium carbonate
(CaCO3) — filled polypropylene (PP) at room temperature are used. The calculations have been
performed for rigid particle dimension (given by radius of the CaCO3 particles R = 0.5 μm) and
particulate filler volume fraction 25 %. The Young’s modulus of the particles E = 72 GPa, and
the value of Poisson’s ratio ν = 0.29. The corresponding parameters of the neat polymer matrix
(PP material) are E = 1.8 GPa, ν = 0.29. The thickness t of the interphase 117 nm is con-
sidered here. The perfect adhesion between particles, interphase and matrix was assumed. The
stress and strain distributions in the matrix have been determined for these interphase properties.
The value of Young’s modulus of the interphase varies from 1.8 to 0.05 GPa. It is assumed that
Young’s modulus of the interphase is constant through its thickness. A micro-crack of length
corresponding approximately to the distance between the particles was modelled and the corre-
sponding values of the stress intensity factors KI and KII were calculated for different direct
of load configurations (see fig. 3).

4. Numerical results

The corresponding values of stress intensity factors KI and KII were estimated using the stan-
dard KCALC procedure as implemented in ANSYS. The mesh around the crack tip has to be
refined because of high stress concentration. Special “crack” finite elements with shifted mid-
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nodes and modelling the near tip stress singularity were applied. Obtained values KI and KII

were used for estimation of further crack propagation direction Ωs using eq. (1), see fig. 6.
The influence of the volume fraction of the composite on the crack located close to the

particle, i.e. for k/k1 = 0.9 and 2a/b → 1 has been studied in [7]. Ratio k/k1 = 0.9 (it
means that tip of crack is in proximity with particle with interphase) was chosen according
to calculations in [5]. It was proved that in this configuration is interaction between particle,
interphase and crack strongest, see fig. 5.

Fig. 4. Example of schematic FEM model

Fig. 5. Dependence of crack propagation direction Ωs on ratio 2a/b for filler volume fraction 25 % for
variety of ratio k/k1 and elastic moduli E2 of interphase
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Six configurations were modeled: for three values of k/k1 ratio and for two limiting values
of interphase moduli. The curves accordance with value of Young’s modulus 0.05 GPa are
marked by quads and curves accordance with value of Young’s modulus 1.8 GPa are marked by
circles. It has to be mentioned, that Young’s modulus of the interphase 1.8 GPa corresponds to
Young’s modulus of the matrix and behavior of this configuration corresponds to the two-phase
composite without interphase. Strong decrease of the angle of crack propagation Ωs corresponds
to Young’s modulus 1.8 GPa. In this case the micro-crack propagates purely in the matrix and
has a tendency to deflect to rigid particles. For this material configurations the direct interaction
between particle and crack is rare and has no influence on fracture toughness of the composite.

Contrary to it for interphase with Young’s modulus 0.05 GPa the influence of rigid particles
is shielded by a soft interface and even for a small volume fraction of the interphase, the be-
haviour of the micro-crack can be changed. The crack deflection is much smaller and in some
cases crack cannot avoid the particle and is attracted to it.

Generalization of the results for various loading conditions is well documented in fig. 6,
where four different configurations were modeled. The direction of the loading is changed from
pure mode I loading (loading angle 0◦) to 45◦ of the loading direction, see fig. 3. The angles
of the further crack propagation direction for the model with a particles covered by the soft
interphase in the comparison with homogenous case is visible on fig. 6. The results are in fact
superposition of the homogenous case and the effect of the particles with interphase. It means
that decrease of the angle of further crack propagation Ωs corresponds to Young’s modulus
0.05 GPa for all mentioned cases is general. Therefore, even for loading direction different from
pure mode I, the crack is more attracted by the particles. So, final configuration corresponds
then to a micro crack with its tip on the interface between matrix and interphase. Due to existing
high stress concentration matrix and particle are debonded and as a consequence, the crack is
blunted. This is connected with strong decrease of the stress near the crack tip and the singular
stress field is changed to regular one. The crack is transformed to a notch and arrested near the
particle.

Fig. 6. Dependence of crack propagation direction Ωs on ratio 2a/b for filler volume fraction 25 % for
variety of loading directions
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5. Conclusion
In the contribution finite element simulations based on the microstructure of polymer composite
filled by coated particles are conducted in order to transfer the information from micro- to
macro-scale. The simplified 2D model of a micro-crack interacting with the nearest particle
was used. All results are generalized for different loading conditions. It was found, that results
are in fact superposition of the homogenous case and the effect of the particles with interphase.
It means that decrease of the angle of further crack propagation Ωs corresponds to Young’s
modulus 0.05 GPa for all mentioned cases is general. Therefore, even for loading direction
different from pure mode I, the crack is more attracted by the particles.

Fig. 7. Example of crack propagation in composite without interphase (on picture top) and in composite
with interphase (on picture bottom)

The influence of the interphase between rigid particle and matrix on toughening mecha-
nism was investigated as general. The basic mechanism of the composite toughening due to
micro-crack propagation consists in shielding of rigid particles by soft interphase followed by
debonding of the particle and the matrix. As a consequence, the crack is blunted and can be
arrested on the particle. The intensity of this effect depends mainly on the size and quality of
the interphase.
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